设A^8=0 ,证明: (E-A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:14:37
哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=
(A-3E)(A-2E)=5E,所以A-3E的逆是(A-2E)/5.
因为A^2-A-2E=0所以A(A-E)=2E所以A-E可逆,且(A-E)^-1=(1/2)A.
因为(A-E)(A²+E)=0所以A的特征值a满足(a-1)(a^2+1)=0由于实对称矩阵的特征值都是实数所以a=1故A的特征值为1,1,.,1又因为实对称矩阵可对角化所以A=Pdiag(
A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我
设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).第一题:因为A^k=0所以(E-A^k)=E而(E-A^k)=(E^k-A^k)=(E-A)(E+A+A的2次方
证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其
由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).
/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
方法一、证明:因为AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA方法二、因为A(A+B)=AA+AB(A+B)A=AA+BA所以AA+AB=A=AA+BA即AB=BA再问:方法