设a为n*1阶矩阵,I为单位矩阵,A=I-aaT,证明A为对称矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:13:10
设a为n*1阶矩阵,I为单位矩阵,A=I-aaT,证明A为对称矩阵
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

线性代数:设a为n×1阶矩阵,I为单位矩阵,A=I+aa^T,证明A为对陈矩阵.

aa^T=(aa^T)^Tleta=(a1,a2,a3...an),theentryati-throwandj-thcolomnofaa^T=ai*aj,thesametimewehavetheent

设A,B都是N阶方阵,I为N阶单位矩阵,且B=B2,A=I+B,证明A可逆

因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的

设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵

证明:由2(B^-1)A=A-4E得2A=BA-4B所以有(B-2E)(A-4E)=8E.所以B-2E可逆,且(B-2E)^-1=(A-4E)/8.

设A,B均为n阶方阵,I为n阶单位矩阵,若A=1/2(B+I),则A的平方=A的充要条件是B的平方=I

充分性A^2=A0.25(B+I)^2=1/2(B+I)(B+I)^2=2(B+I)B^2+BI+IB+I=2B+2IB^2+2B+I=2B+2IB^2=I必要性若B^2=IA^2=0.25(B+I)

设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆

因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A、B均为n阶方阵,I为n阶单位矩阵,若A+B=AB,求证AB=BA

A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=

设A为n阶可逆矩阵,E为n阶单位矩阵,刚A-1[A,E]= _______

按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1

设A为n阶可逆矩阵,U,V为为n*m矩阵,Em为m阶单位矩阵,若秩(V'A-1U+Em)

考虑分块矩阵B=[A,-U;V',Em],P=[En,U;0,Em],Q=[En,A^(-1)U;0,Em].可知P,Q可逆,故r(PB)=r(B)=r(BQ).而PB=[A+UV',0;V',Em]

设A为n阶正定矩阵,I是n阶单位阵,证明 A+I的行列式大于1

正定矩阵A的特征值都大于0所以A+I的特征值都大于1而方阵的行列式等于其全部特征值之积所以|A+I|>1.

设A为正定矩阵,I为单位阵.证明det[A+I]>1

1)A为正定矩阵,则A的所有特征值都大于等于0;2)A+I的特征值都大于等于1,记为a1,a2,…,an(设A为n阶方阵);3)det[A+I]=a1*a2*^…an>1..应该可以等于1吧,这里记的

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.

分块矩阵 设A为n阶非奇异矩阵,a为n×1矩阵,b为常数

PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A