设A为n阶对称矩阵,B为n阶反对称矩阵.证明:AB为反对称矩阵等价于AB=BA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:25:24
设A为n阶对称矩阵,B为n阶反对称矩阵.证明:AB为反对称矩阵等价于AB=BA
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0

A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方

如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.

考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设A,B均为n阶实对称矩阵,证明:A与B相似

因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.

由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵

谁会矩阵的题啊,设A为n阶对称矩阵,B为n阶反对陈矩阵.证明:1、B^2(B的平方)为对称矩阵;2、AB-BA为对称矩阵

1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'