设a为n阶矩阵,R(A)=n-1,a1,a2是Ax=b的两个不同的解向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:20:22
设a为n阶矩阵,R(A)=n-1,a1,a2是Ax=b的两个不同的解向量
设n阶矩阵A满足A平方=A,E为n阶单位矩阵,证明r(A)+r(A-E)=n.

n阶矩阵A满足A平方=A===>r(A)≤n当r(A)=n时,===>A=E===>r(A-E)=0===>r(A)+r(A-E)=n当r(A)A为至少有一行是全0的单位矩阵===>r(A)+r(A-

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

线性代数 设A为n(n>2)阶实对称矩阵,A^2=A,秩(A)=r

A^2=A,A的特征值是0和1.因为A是实对称矩阵,可对角化,所以A的秩就是对角化后非零主对角线元素的个数,所以A的特征值是r个1与n-r个0.所以2E-A的特征值是r个1与n-r个2,所以|2E-A

设A为n阶矩阵,R(A)

R(A)=n时,R(A*)=nR(A)=n-1时,R(A*)=1R(A)

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R