设A为三阶矩阵,且|A|=2,则|3A-(A^*)^*|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:54:18
设A为三阶矩阵,且|A|=2,则|3A-(A^*)^*|=
设A为三阶矩阵,|A|=2,A*为A的伴随矩阵,则行列式|3A^-1)+2A*|=____

A^-1=1/|A|xA*=1/2A*所以1/2=|A^-1|=|1/2A*|=1/8|A*|,|A*|=4|3A^-1+2A*|=|3*1/2A*+2A*|=|7/2A*|=(7/2)^3*4=34

同问设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=

可以|A||1/3A^-1-2A*|=|1/3AA^-1-2AA*|=|1/3E-2|A|E|=|1/3E-4E|=(1/3-4)^n原题是什么?3阶的?(3A)^-1最后结果再除|A|即可再问:对不

1,设A为三阶矩阵,|A|=2,A*为A的伴随矩阵,则行列式|(3A^-1)-2A*|=____

1.|(3A^-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|-A(-1)|=(-1)^4*1/|A|=1/22.D=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1

设A为2阶矩阵,且|A|=-1,证明A可以对角化

A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再

设A为三阶矩阵,且|A|=2,则|(A*)—1|=()

如果A*是指伴随矩阵的话,因为矩阵A中的元素都用它们在行列式A中的代数余子式替换后得到的矩阵再转置,这个矩阵叫A的伴随矩阵.A与A的伴随矩阵左乘、右乘结果都是主对角线上的元素全为A的行列式的对角阵.所

设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=

因为A*=|A|A^-1=2A^-1所以|3A^-1-2A*|=|3A^-1-4A^-1|=|-A^-1|=(-1)^n|A|^-1=[(-1)^n]/2

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A为4阶矩阵,A*为A的伴随矩阵,且{A}=1/2,则{(3A)^-1-2A*}=?

啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4

设A为n阶矩阵,且|A|=2,则|3A^-1-2A*|=?

A*A=AA*=|A|I从而A*=|A|A﹣¹3A﹣¹-2A*=3A﹣¹-2|A|A﹣¹=-A﹣¹|-A﹣¹|=(-1)^n|A﹣¹

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A为3阶矩阵,且A^2=0,则R(A)=?

A^2=0即AA=0那么在这里由矩阵秩的不等式R(A)+R(B)-n≤R(AB)可以知道,2R(A)-3≤R(A^2)=0所以2R(A)≤3即R(A)≤1.5显然秩只能为非负整数,那么R(A)=0或1

设A为三阶矩阵,且|A|=二分之一,求|(3A)^-1 - 2A^*|的值.

(3A)^(-1)=(1/3)A^(-1)A*=|A|A^(-1)=(1/2)A^(-1)所以|(3A)^-1-2A^*|=|(1/3)A^(-1)-(1/2)A^(-1)|=|(-2/3)A^(-1

设A为3阶矩阵,且A|=3,则|-2A-1|=______.

A为3阶方阵,|-2A-1|=(-2)^3|A-1|=-8*(1/3)=-8/3-1是逆的意思吧,否则一个矩阵和1是没法做减法的

矩阵 A为三阶矩阵,且|A|=-4.|A*|怎么算

|A*|=|A|^(n-1)故等于(-4)^2=16