设a属于r,函数fx=1 3x^3-1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:56:51
f(x)=(2^x-1)/(2^x+1)是R上的增函数.证明:设x1
∵函数f(x)是定义在R上的奇函数且对任意x属于R都有f(x)=f(x+4)∴f(0)=f(4)=0f(x)=-f(-x)f(x)为周期为4的函数∴f(2012)=f(0)f(2011)=f(-1)∵
(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0
解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,
f(x)=x^3+a^2+1+xf'(x)=3x^2+1>0所以f(x)在R上单调递增
1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0
fx=(lnx+a)/xf'(x)=(1-lnx-a)/x²=-[lnx-(1-a)]/x²f'(x)=0解得x=e^(1-a)由f'(x)>0即lnx-(1-a)再问:怎么确定e
fx=2cos^2x+2根号3sinxcosx-1=2cos^2x-1+2根号3sinxcosx根据倍角公式,sin2α=2sinαcosαcos2α=2cos^2(α)-1fx=cos2x+根号3s
主要讨论f(x)的单调性求导f(x)'=e^x+a分类讨论1.a>=0时f(x)'恒大于0,于是f(x)单调递增,结合fx大于等于0对一切x属于R恒成立,知limf(x)[x-->-无穷]>=0,于是
重点化简集合B.f[f(x)]=a(ax^2-1)^2-1=xa(ax^2-1)^2=x+1a(ax^2-1)^2-ax^2=x+1-ax^2a(ax^2-1+x)(ax^2-1-x)+(ax^2-x
对f(x)求导得f'(x)=1-a/(2x),要求f(x)的单调增区间,则求f'(x)>=0,则1-a/(2x)>=0.即a/(2x)0时,x>=a/2,当a
你这个函数里没有出现a啊……f(x)的单调递增区间是:[0,+∞)再问:错了,是函数fx=x(e^x-1)-ax^2再答:哦,好的这样的话,一般的高中方法可能不能用了,应该需要求导:f'(x)=(x+
(1)(-4a^2-1)/(4a)=17/8-32a^2-8=68a8a^2+17a+2=0(a+2)(8a+1)=0a=-2ora=-1/8(2)ax^2+x-a>1ax^2+x-a-1>0(x-1
F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0
求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0
任取X1,X2属于R,且X10则函数单调递减若F(X1)-F(X2)
答:f(x)=x^2-alnx,x>0;f'(x)=2x-a/x1)当a=0,f(x)是增函数.