设A是n 阶实对称矩阵 A的行列式小于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:56:51
设A是n 阶实对称矩阵 A的行列式小于0
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

设a、b是n阶对称矩阵,试证明a+b也是对称矩阵

a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对

设A是n阶实对称幂等矩阵,即A²=A.

(1)A是n阶实对称幂等矩阵,故A的特征值只能是0和1故存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)(2)设特征值1是r重,0是n-r重,则矩阵A-2I有r重特征值1

设A为n阶矩阵,则行列式|A|=0的必要条件是

|A|=0,则秩小于n,行秩小于n,根据定理行向量个数为n比秩大,得证!

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设A是n阶正交矩阵,则A的行列式是多少?只要解题过程即可

/>因为A是正交矩阵所以A(A^T)=E两边取行列式得:|A||A^T|=1又|A^T|=|A|所以|A|²=1得|A|=±1答案:|A|=1或-1

设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB=BA

这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

设A是n阶实对称矩阵,证明r(A)=r(A^2)

证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

线性代数的问题设A是一个n阶实对称矩阵,且A的行列式<0,请问,如何证明必存在n维向量X≠0,使得(X^T)AX<0,

A是实对称矩阵,则A的特征值都是实数.因为A的行列式等于所有特征值的乘积,且A的行列式<0,所以A至少有一个特征值λ<0.设X是A对应于特征值λ的特征向量,则AX=λX,两边左乘以X^T,则(X^T)

设A为n阶实对称矩阵,且A^2+A-3E=0,D=1是A的一重特征值,计算行列式A+2E的值

因为A^2+A-3E=0所以A的特征值满足λ^2+λ-3=0题目不对吧再问:是对的呀老师哦哦是A^2+2A-3E=0老师再帮忙解答下把谢谢啦再答:因为A^2+2A-3E=0所以A的特征值满足λ^2+2