设a是n阶方阵,证明A与A的转置矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:47:33
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
这个很简单啊,r(A)
A可逆,A^(-1)ABA=BA,因此AB与BA相似
首先,当AB=0时r(A)+r(B)=1,故r(A*)=1.再问:若r(A*)=1,那不是r(A)
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
由已知,A*=A^T所以AA^T=AA*=|A|E由于A≠0,所以存在aij≠0.考虑AA^T中第i行第i列的元素知ai1^2+ai2^2+...+aij^2+...+ain^2=|A|再由aij是实
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.
A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
A正交说明|A|=1或者-1A*=|A|A逆=±A'('表示转置所以A*乘(A*)'=±A'乘(±A')'=A'A=E所以A*亦正交
例如A=(01)(00)则A≠0且A^2=0