设a是三阶矩阵,a的三个特征值为1,-1,2,则可逆的是'
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:12:46
A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A
设a是A的一个特征向量,又X是A的特征值,则有:Aa=Xa,两边同时乘以A的逆矩阵,则:A^(-1)*Aa=A^(-1)*Xa,即a=A^(-1)*Xa,变换位置得:A^(-1)a=1/X*a,由此可
由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2
A的特征值是-1,1,4所以B=2E-A的特征值是(2-λ):3,1,-2.E+A^-1与A^-1的特征值不同若a是A^-1的特征值,则a+1是E+A^-1的特征值
正交矩阵是实矩阵.①.它的特征值的模都是1.②.它的特征值除±1外,一定是成对出现的共轭虚数(特征方程为实系数).每一对之积为1(模平方).注意|A|=全体特征值的积.而|A|=-1.如果A没有实特征
设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.
2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.
知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ
则a^2的特征值为4,4,9a^2-2a+e的特征值为1,1,4再问:谢谢你啦,,,
(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.
再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素
选A因为|xE-AT|=|(xE-A)T|=|xE-A|
特征方程为r³-3r²+5r-3=0r³-r²-2r²+2r+3r-3=0r²(r-1)-2r(r-1)+3(r-1)=0(r-1)(r
由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.
则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.