设f(u)可导,y=sin2次方(f(e的X次方)),则dy=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:08:19
设f(u)可导,y=sin2次方(f(e的X次方)),则dy=?
设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设y=f(sinx),f(u)可微,则dy=_____.

y=f(sinx),f(u)可微,则dy=d(f(sinx))=f'(sinx)cosx

设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

已知f(u)可导,y=f{ln[x+√(a+x^2)]},求y'

y'=f'(ln(x+√(a+x²)))·ln(x+√(a+x²))‘=f'(ln(x+√(a+x²)))·1/(x+√(a+x²))·(x+√(a+x

设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求

F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/

设y=y(x)由方程xe^f(y)=e^y确定,f(u)可导且f′≠1,求dy/dx

你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能

设u=f(x,y)可微,且满足方程x(σ f/σ x)+y(σ f/σ y)=0

x=rcosθ,y=rsinθσx/σr=cosθ,σy/σr=sinθσf/σr=(σf/σx)(σx/σr)+(σf/σy)(σy/σr).=(σf/σx)cosθ+(σf/σy)sinθ.=[(

设f(u)为可导函数,求dy/dx:(1) y=f(x^3) ; (2) y=f(e^x+x^e); (3) y=f(e

1.dy/dx=f'(x^3)*3x^22.dy/dx=f'(e^x+x^e)*(e^x+ex^(e-1))3.dy/dx=f'(e^x)*(e^x)e^f(x)+f(e^x)[e^f(x)]*f'(

设 z=xyf(y/x),f(u)可导,则xZ'x+yZ'y=?

Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-

设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导

令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=

复合函数求导法设z=xy+xF(u),而u=y/x,F(u)可导,证明x*(z对x的偏导)+y*(z对y的偏导)=z+x

(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+

设f(x,y)=xy+f(u,v)dudv,

∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+

设f(u)可导,函数y=y(x)由x^y+y^x=f(x^2+y^2)所确定,则dy=

两边求微分:d(x^y+y^x)=d(f(x^2+y^2))对x^y可以这么看:先把X看成常数,对Y求微分相当于a^Y,再把Y看成常数对X求微分相当于X^a.那么就好用公式了如下:d(x^y)=X^Y

设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p

想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

设y=u^v,u,v是x的可导函数,证明:dy/dx=u^v(v/u*du/dx+lnu*dv/dx)

y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx