设f(x)=∫sin(xt) tdx,则∫2xf(x)dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:17:21
1.f(x)=lim{t^2*sin(x/t)*[φ(x+π/t)-φ(x)]}=limt^2*sin(x/t)[φ'(x)*(π/t)+(1/2)*φ''(x)*(π/t)^2+o(π/t)^2](
由题设,知f(0)=0,g(0)=0,令u=xt,得g(x)=∫(0,x)f(u)du/x,(x≠0),从而g'(x)=[xf(x)-∫(0,x)f(u)du]/x^2,(x≠0),由导数定义有,g'
你啊,要好好学习了!还没有悬赏分?把对称轴即x=∏/8代入原式子,即sin(∏/4+φ)=1或者-1,再用(-π
你这两道题目,都没说清楚,无法解,第一道,指数与乘机,第二道定积分,总得给个积分区间吧,第二道基本上绝对值可以抵消一部分,最后xe^sinx的积分
f(x)=cosx-x*sinx先令xt=s把s和x分离求导得到f'(x)=-2sinx-xcosx积分得到f(x)
第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,
令xt=u,则t=u/x,dt=(1/x)du,t:0-->1时,u:0-->x则原式化为:∫(0,x)f(u)/xdu=f(x)+xe^x即:1/x∫(0,x)f(u)du=f(x)+xe^x得:∫
1)由三角函数和差化积公式:f(x)=2sin(x+x+π/3)/2cos(x-x-π/3)/2=2sin(x+π/6)cos(π/6)=√3sin(x+π/6)f(x)的最小值为-√3.当x+π/6
f(x)=tx^2+2xt^2+t-1f(x)=t(x+t)²+t-1-t³x为-t时最少值f(-t)=t-1-t³h(t)=t³-t+1
f(x)=sinx-∫(0~x)(x-t)f(t)dt=sinx-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt,之后两边对x求导f'(x)=cosx-[x'·∫(0~x)f(t)dt+x·f
f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3
题目中的“f(x)为负定矩阵”应为“f(x)为负定二次型”.详细解答见图片[参考文献]张小向,陈建龙,线性代数学习指导,科学出版社,2008.周建华,陈建龙,张小向,几何与代数,科学出版社,2009.
这个貌似不难啊(1):由f(x)
d/dx∫(1→xt)ƒ(u)du=d(xt)/dx•ƒ(xt)=tƒ(xt)
δ=x^2-4>=0解得x>2或
由1,3作为条件,可以得到2,由2,3作为条件,可以得到1,由1,3得到2,证明:由3可知w=2或-2,设定w=2时,由1可以得到2*π/12+t=kπ/2,k为不等于0的整数.得到t=kπ/2-π/
letx=siny∫f(x)dx=∫f(siny)d(siny)=∫[y/(siny)^2]d(siny)=-∫yd[1/(siny)]=-y/siny+∫(1/siny)dy=-y/siny+ln|
∫f′(x)dx=sinx²+C
f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+