设f(x,y)=fe^-t^2dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:15:38
设f(x,y)=fe^-t^2dt
设y=f(x,t)而t=t(x,y)是方程F(x,y,t)=0确定的隐函数,f、F均有一阶连续偏导数且F't+F'yf'

由方程F(x,y,t)=0,两边对x求导:ðF/ðx+(ðF/ðy)(dy/dx)+(ðF/ðt)(dt/dx)=0;即F'x+F'y*(d

设函数f(x)=x2-4x+4的定义域[t-2,t-1],求函数f(x)的最小值y=g(t),

原函数为y=(x-2)2的二次函数,对称轴为x=2,讨论定义域和对称轴之间的关系,望楼主思考一下!

已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0

已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0

设f(t)是二次可微函数且f''(t)不等于0 x=f'(t),y=tf'(t)-f(t),求dy/dx,d^2y/dx

dx/dt=f''(t)dy/dt=f'(t)+tf''(t)-f'(t)=tf''(t)dy/dx=(dy/dt)/(dx/dt)=1/td^2y/dt^2=f''(t)+tf'''(t)d^2y/

设f(x)+t=f(x),则y=f(x)+f(2x)+f(3x)+f(4x)的周期

f(x)+t=f(x)意思是函数f(x)的周期是t,那么f(2x)的周期是t/2,f(3x)的周期是t/3,f(4x)的周期是t/4,那么它们的和的周期一定是它们分别周期的最小公倍数,即t.也就是说y

①设f(x)=x+2∫(0,1)f(t)dt,求f(x).

第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,

设y=f(x,t),而t是方程F(x,y,t)=0所确定的x,y的函数(F't(x,y,t)≠0),求dy/dx..

可以采用直接微分法:对方程y=f(x,t)两边取微分:dy=fx`dx+ft`dt(1)(注意:fx`表示函数f(x,t)对x求偏导,ft`表示函数f(x,t)对t求偏导,以下类似记号就不作说明了)对

设f(x)=∫(x^2到2) dt/√(1+t^2),已知g(y)是f(x)的反函数,则g′(y)=

y=f(x),x=g(y)y=∫(x²~2)dt/√(1+t²)dy/dx=d(x²)/dx·1/√(1+x⁴)=2x/√(1+x⁴)dx/dy=

设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?

y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d

已知f(x)=x(1/(2^x-1)+1/2).(1)证明f(x)大于0.(2)设F(x)=f(x+t)-f(x-t).

第一题证明:1)因为f(x)=x(1/(2^x-1)+1/2),分母不能为0,所以x≠02)化简f(x)得f(x)=(x/2)*((2^x+1)/(2^x-1))3)当x>0时,(2^x)>1,所以(

设函数y=f(x)=∫te^(√t) dt 其中x

dy/dx=x^2e^x*(x^2)'=2x^3e^x

x=f'(t).y=tf'(t)-f(t),设f"(t)存在且不等于零,求二阶导数

求y对x的二阶导?x=f'(t).y=tf'(t)-f(t)那么一阶导y'/x'=(tf''(t)+f'(t)-f'(t))/f''(t)=t二阶导=t'/x'=1/f''(t)就是等于f(t)的二阶

设函数 f(x)=sin(2x+y),(-π

f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3

设x,y,t,f是整型变量,则执行表达式:x=(y=3,y+2,y+10)后,x的值为

则执行表达式:x=(y=3,y+2,y+10)后,x的值为13.先赋值y=3,再计算y+2的值为5,再计算y+10的值为13.逗号表达式的值即为13,将其赋给x.

设f(x)=(a^x+a^y) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)

f(x+y)=[a^(x+y)+a^(-x-y)]f(x-y)=[a^(x-y)+a^(y-x)]所以,f(x+y)+f(x-y)=a^(x+y)+a^(-x-y)+a^(x-y)+a^(y-x)f(

设f(t)=∫ ∫ ∫(x^2+y^2+z^2

用球坐标f(t)=∫∫∫f(r²)*r²*sinφdrdφdθ=∫[0→2π]dθ∫[0→π]sinφdφ∫[0→t]f(r²)*r²dr=2π∫[0→t]f(

设函数f(x)=sin(wx+t)(-π/2

由1,3作为条件,可以得到2,由2,3作为条件,可以得到1,由1,3得到2,证明:由3可知w=2或-2,设定w=2时,由1可以得到2*π/12+t=kπ/2,k为不等于0的整数.得到t=kπ/2-π/

已知t为实数,设x的二次函数y=x^2-2tx t-1的最小值为f(t),求f(t)在t大于等于0且小于等于2上的最大小

如果二次函数是y=x^2-2tx+t-1=(x-t)^2-t^2+t-1所以当x=t时函数取得最小值f(t)=-t^2+t-1.f'(t)=-2t+1,得驻点t=1/2.f(0)=-1,f(1/2)=

设f(x+y,xy)=x^2+y^2,则f(x,y)

f(x+y,xy)=x^2+y^2=(x+y)^2-2xyf(x,y)=x^2-2y

设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,

f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+