设g为三角形abc的重心,过g做直线l分别交线段ab ac于p q,若ap
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:46:09
延长AG交BC于MAG=kAD+(1-k)AE因为AD=xAB,AE=yAC所以AG=kxAB+(1-k)yAC①又G为三角形的重心,所以M为三角形的中线(即M为BC中点)所以AM=1/2AB+1/2
是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB
设△ABC三点坐标分别是(x1,y1)(x2,y2),(x3,y3),G(x,y)则GA^2+GB^2+GC^2=(x-x1)^2+(y-y1)^2+(x-x2)^2+(y-y2)^2+(x-x3)^
向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线
证明:令,向量AB=a,向量AC=b.延长AG,BG,CG分别交BC边,CA边,AB边于E,F,D.而,G为△ABC的重心,则有向量BC=向量(AC-AB)=b-a).向量AE=向量(AB+1/2*B
所谓重心就是过此点的直线分割图形时,图形的两半质量(面积)相等.而直线若同时过重心G和一个顶点A,由于分出的两个三角形面积相等、并且又等高,因此AD=CD.这一点书上应该都会给出来.接下来就很好证明A
向量AB=a,向量AC=b延长AG,BG,CG分别交BC边,CA边,AB边于E,F,D.而,G为△ABC的重心向量BC=向量(AC-AB)=b-a向量AE=向量(AB+1/2*BC)=(a+b)/2向
G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4
三角形ABC的重心GG[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]设AB中点为D.所以D横坐标{x1+x2}/2,而重心定理告诉我们AD=3GD,所以x3-{x1+x2}/2=3{x-{x1
(1)向量OP+PG=OQ+QG=OG=(OA+OB)/3,PG=(1/3-x)OA+(1/3)OB,QG=(1/3)OA+(1/3-y)OB,向量PG‖QG,∴1/(1-3x)=1-3y,∴y=(1
要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A
第(1)问简单,不多说,第(2)问发了图片
设BG交AC于D,延长BD到E,使DE等于DG,所以可证出EC=AG=8,所以GCE为6810直角三角形,剩下就简单了,SBDC=SCEB-SCDE=48-12=36SABC=36*2=72
设AG的延长线交BC于D,因为G是重心所以BD=CD因为BG=CG=2所以根据“三线合一”性质得GD⊥BC根据重心的性质“三角形重心将每条中线分为1:2两部分”知道:GD=AG/2=√3所以根据勾股定
60如果是向量的话GA+GB+GC=0所以a=b=c=1,为等边三角形所以B=60度
你的重心画的太偏了,完全不在中线交点啊亲.用面积做,下面省略面积符号S.△GAE=△GEC△GFC=△GBF△GAD=△GDB又△BAE=△BEC,减去第一个式子,依次类推,会发现六个小三角形面积一样
重心的性质及证明方法 1、重心到顶点的距离与重心到对边中点的距离之比为2:1. 三角形ABC,E、F是AB,AC的中点.EC、FB交于G. 过E作EH平行BF. 
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三
E点在哪里?应该是A点吧,是A那么向量GA+向量GB+向量GC=0