设L是曲线y=((8x^3) π)e^sinπx arctanx上从点(0,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:18:41
设L是曲线y=((8x^3) π)e^sinπx arctanx上从点(0,0)
设曲线C的参数方程为x=2+3cosn,y=-1+3sinn(n为参数),直线l的方程为x-3y+2=0,则曲线C上到直

|2+3cosn+3-9sinn+2|/根号10=7根号10/10,2+3cosn+3-9sinn+2=7或-7,3根号10cos(n+@)=0或-14(无解),共有两个解,B

设l为曲线x^2/4+y^2/3=1,其周长为a,计算曲线积分

简单的很,因为是曲线积分,所以可以将曲线方程带入化简积分函数,带入后可以把积分函数中3x^2+4y^2一项消去,得到了∫L(12+2xy)ds吧?因为由曲线方程同时乘以12得到的积分函数中的一项……对

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

设P(x,y)是曲线x^2+y^2+4x+3=0上任意一点,则y/x的取值范围是

令k=y/xy=kx代入x^2+k^2x^2+4x+3=0(k^2+1)x^2+4x+3=0二次项系数大于0所以是二次方程这个关于x的方程有解则判别式大于等于所以16-12(k^2+1)>=0k^2

设L是曲线y=x的平方+3在点(1,4)处的切线,求由该曲线,切线L及y轴围成的平面图形的面积S?(求大神帮助!急)

导数为2x,在1点值为2,L斜率为2.得到L的方程2x-y+2=0,与x轴交点为(1,0)作直线x=2,可算区边梯形面积减去三角形面积区边梯形积分上下限为0,2积分函数是y结果是17/3,三角形面积为

高数格林公式问题设曲线 L为闭曲线|x|+|y|=2,取逆时针方向,则 ∮L(axdy-bydx)/(|x|+|y|)=

格林公式要求被积函数P,Q在区域内连续,而且一届偏导数也要连续.L围成的区域D包含原点,显然连续性是不满足的.所以不能用Green公式.但是把原点挖掉后,就连续了.所有可以以原点为圆心做一个充分小的圆

曲线的轨迹方程设Q是圆x^2+y^2=4上的动点.另有点A(根号3,0).线段AQ的垂直平分线l交半径OQ于点P当Q点在

设点B(x1,y1),点C(x2,y2).设BC的中点M为(x,y).则有x1+x2=2x,y1+y2=2y.而BA垂直于CA故,直线BA于CA的斜率相乘为-1,即[(y1-2)/(x1-0)]*[(

设L为沿y=x^2从(0,0)到(π,π^2)的曲线,

设P(x,y)=2xy^3-y^2cosx,Q(x,y)=1-2ysinx+3x^2y^2计算出:Q'x=P'y则积分与路径无关∫L(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^

设L是连接O(0,0)及A(1,1)的线段,则曲线积分∫L(X+Y)ds=

连接(0,0)及(1,1)的线段是y=x,dy/dx=1∫L(x+y)ds=∫(0→1)(x+x)√(1+(dy/dx)²)dx=∫(0→1)2x√(1+1)dx=√2*x²|(0

设l为曲线c:y=lnx/x,在(1,0)处的切线

y=lnx/xy'=(1-lnx)/x²y'(1)=(1-ln1)/1²=1l方程为y=x-1(2)就是要证明对所有x≠1,有x-1-lnx/x>0设g(x)=x(x-1)-lnx

设L:y=y(x)在点(x,y)处的切线的斜率是k=1+(2y+1)/x,且曲线L过点(1,0).试求曲线L的方程.

设L方程式Y=AX平方+bX+C因为过1,0所以a+b+c=0切线的斜率是k=1+(2y+1)/x能得到y’=1+(2y+1)/x由于y'=2ax+b所以1+(2y+1)/x=2ax+b所以b=1和(

椭圆 参数方程.已知曲线 x^2/4+y^2=1设过点M(1,0)的直线l是曲线C上某两点A B连线的中垂线 求l的斜率

首先得推导一个重要中点的公式y=-b^2*x/a^2*k设A(x1,y1)B(x2,y2)C(x,y)这里M是AB中点x(1)^2/a^2+y(1)^2/b^2=1①x(2)^2/a^2+y(2)^2

设i是曲线y=x²+3在点(1,4)处的切线,求由该曲线,切线l及y轴围成的平面图形的面积

y '=2x所以在点(1,4)切线的斜率k=y'=2×1=2故切线i 为y-4=2(x-1),得y=2x+2由y=2x+2和y=x²+3联立解得交点(1,

(2)设直线l是曲线y=f(x)切线,证明直线l与直线x=1和直线y=x所围三角形的面积为定值

1.f(x)'=a-1/(x+b)^2f(2)'=a-1/(2+b)^2=0a、b是整数,所以1/(2+b)^2=1,否则不可能满足题意所以b+2=+-1,b=-1或b=-3a=1,又f(2)=3,所

求设L是从A(1,0)到(1,2)的线段,曲线积分∫(x+y)ds=?

你确定题目没有问题?再问:再答:我就说嘛,选B,L上,x+y=1,所以,转化为1的积分,于是,直接求线段长度即可。再问:老师再问一个问题再问:老师是应用题的第二题谢谢再问:

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&