设n阶矩阵ab满足ra rb特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:56:07
设n阶矩阵ab满足ra rb特征值
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-

设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

设A,B都是实数域R上的n×n矩阵,证明:AB,BA的特征多项式相等

就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q

设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0.

A^2=A,B^2=B,(A+B)^2=(A+B)==>AB+BA=0==>0=A^2B+ABA=AB+ABA,0=ABA+BA^2=ABA+BA===>ABA=-AB=-BA==>AB=BA

n阶矩阵AB满足A+2B=AB证明AB=BA

证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.

设A是m*n矩阵,且列向量组线性无关,B是n阶矩阵,满足AB=A,则r(B)等于多少

易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,

设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA

AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB

设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B,必与对角矩阵相似,且这样的B是A的多项式

喔唷这个太深奥咯不过我还是很欣赏你热爱学习刻苦专研的这种精神值得大家学习佩服佩服所以分奖励给我嘛……

设A,B都是n阶矩阵,A可逆,且存在一个常数l,满足A=(A-lB)B,求证:AB=BA

若常数l=0则AB=A,即B=E;若常数l非零,E=(E-lA^{-1}B)B,所以B可逆且E=B(E-lA^{-1}B),相减得lA^{-1}B^2=lBA^{-1}B,左乘l^{-1}A右乘B^{

关于逆矩阵的证明题设n阶矩阵A,B满足A+B=AB,证明A-E可逆

A+B-AB=0A+B-AB-E=-E(A-E)(-B+E)=-E(A-E)(B-E)=E所以A-E可逆,(A-E)-1=B-E

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B必与对角矩阵相似.

先对A是对角阵的情形进行证明再把一般的情形归结为上面的特殊情形

设n阶矩阵A满足A平方=E,证明A的特征只能是正负1

因为E的特征值是1,所以A^2的特征值也是1,设A有特征值k,取相应的特征向量为x,则有Ax=kx,两式左乘A,得A^2*x=k*Ax=k^2*x,故k^2=1,k=±1

设A与B都是N阶正交矩阵试证AB也是正交矩阵

只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设n阶矩阵A满足A的平方等于E,证明A的特征只能是正负一.

设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

设n阶矩阵ab,满足ra+ rb<n,证明ab有公共的特征值及特征向量

用齐次方程组的解来计算.经济数学团队帮你解答.请及时评价.

设n阶矩阵A和B的特征多项式相等,则()

c是对的,因为特征多项式相等,说明有相同的特征值,而矩阵的行列式值就是特征值的乘积.A要求有相同的不变因子,B就很离谱了.