设T是V上的一个线性变换,如果T^(k-1)a不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:11:29
(1)因为σ是一个线性变换,则令其特征多项式为:f(λ),根据Cayley-Hamilton定理,σ的特征多项式一定为σ的化零多项式.∴f(σ)=0又σ是3维实空间上的线性变换则σ的特征多项式的次数不
那先随便取定一组基B1,T在这组记下的矩阵设成A.再取另一组基B2两组基间的过渡矩阵P:从B1到B2间的过渡矩阵.(此时B2可以由P唯一决定)T在B2下的矩阵设成C.易知C=P逆*A*P那么这个问题的
知识点:线性变换在不同基下的矩阵相似设T在某基下的矩阵为A.则由已知对任一可逆矩阵P,P^-1AP=A.所以AP=PA所以A为一个数量矩阵kE故线性变换T为数量变换再问:AP=PA则A=kE,有什么依
选B:行列式.再问:为什么呢?再答:因为A和-A在同一基下的矩阵B,C满足:B=-C.取行列式有|B|=|-C|=(-1)^n*|C|=|C|.
正交变换满足σ^Tσ是恒等映射.因此对任意的两个非零向量a,b,有==,即正交变换保持内积不变,因此||a||^2==.长度不变.于是a与b的夹角cos(theta)=/【||a||*||b||】在正
注意σ(ζ)=0等价于0==,即ζ=0用上述性质直接验证σ是线性变换即可:σ(ζ+η)-σ(ζ)-σ(η)=0σ(kζ)-kσ(ζ)=0
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
A^(n-1)a≠0,A^na=0说明a,Aa,...,A^(n-1)a线性无关A在这组基下的矩阵为00...0010...0001...00......00...10特征值全是0但r(A)=n-1,
不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1
设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的所有特征值也不为0.A的特征值就是σ的特征值
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
证明:若存在k0,k1,...,k(n-1),使得:k0a+k1Ta+...+k(n-1)T^(k-1)a=0由于T^(k-1)a≠0,等式两端同时作用T^(k-1)得:k0T^(k-1)a=0=>k
σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
用反证法.若λ=0是特征值,ξ是对应的特征向量,那么: Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^
A是正交变换,即AA*=EA是对称变换,即A=A*所以显然有A²=AA*=E
L是什么?线性组合?设L(α1,α2,…,αs)=a1*α1+a2*α2+…+as*αs;T(L(α1,α2,…,αs))=T(a1*α1+a2*α2+…+as*αs)=a1*T(α1)+a2*T(α
取V的一组基,使得б在这组基下的表示矩阵A只有第一列非零,换句话说A=xy^T,x,y是列向量,y=[1,0,...,0]^T.那么A^2=xy^Txy^T=(y^Tx)A,由于A非零,这个常数c=y