设u=f(x,y,z)有连续的一阶偏导数,又函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:22:09
设u=f(x,y,z)有连续的一阶偏导数,又函数
设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zez所确定,求du.

∵u=f(x,y,z)有连续偏导数∴du=f′xdx+f′ydy+f′zdz又∵z=z(x,y)由方程xex-yey=zez所确定∴对方程两边求微分得:d(xex-yey)=d(zez)即(x+1)e

设函数u=f(x,y,z)具有连续偏导数

∂w/∂x=f‘1+yz·f’2(f‘1表示对f的第一个变量求偏导,1在下标其余类似)f具有二阶连续偏导数,∂²w/∂x∂z=&#

设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay

令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=

设函数u=f(x,y,z)具有连续的一阶偏导数,其中z=z(x,y)由可微函数y=φ(x,t)及t=ψ(x,z)确定,且

第一种理解法:本题要分清各变量的关系,由题意可知,u是函数,t是中间变量,x与y是自变量.因此x与y之间无函数关系,所以∂y/∂x=0.第二种理解法:对x求偏导时另一个自变量y

设函数u=f(x,y,z)有连续偏导数z=z(x,y)由方程xe^x-ye^y=ze^z所确定求du

你的理解是对的,应该有(δu/δz)dz这一项,再问:那答案为什么没有这一项,是不是这一项求出来等于0?再答:一般不会=0,错的可能性较大

方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.

用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f

设函数F(u,v ,w) 的偏导数连续,由F(x-y,y-z,z-x)=0确定隐函数z=z(x,y),求此隐函数的全微分

F(x-y,y-z,z-x)=0对x求偏导数(y是常量):F1+F2(-az/ax)+F3(az/ax-1)=0F(x-y,y-z,z-x)=0对y求偏导数(x是常量):F1(-1)+F2(1-az/

设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/...

因为(偏导z/偏导x)=(1+z(x,y)*f‘(y/x)*y/x^2)/f(y/x)(偏导z/偏导y)=-(z(x,y)*f‘(y/x))/(x*f(y/x))所以x(偏导z/偏导x)+y(偏导z/