设u=ln√1 x² y² z²,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:33:53
设u=ln√1 x² y² z²,则
设u=ln(x+y^2+z^3),求du

u'x=1/(x+y^2+z^3)u'y=2y/(x+y^2+z^3)u'z=3z^2/(x+y^2+z^3)du=u'xdx+u'ydy+u'zdz=1/(x+y^2+z^3)dx+2y/(x+y^

设y=ln[ln(1+x)],则y的导数=

再问:再问:帮帮忙

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

设函数y=ln(1+x),则y''=?

y=ln(1+x)y'=1/(1+x)y''=-1/(1+x)²熟记求导公式

高数 设函数u=f(x,y,z),其中z=ln√(x^2+y^2),求(αu/αx)和(αu/αy)

这是求偏导数.偏u/偏x=fx'dx+fz'*偏z/偏x=fx'dx+fz'*x/[(x^2+y^2)^0.5],偏u/偏y=fy'dy+fz'*偏z/偏y=fy'dy+fz'*y/[(x^2+y^2

设 z=xyf(y/x),f(u)可导,则xZ'x+yZ'y=?

Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-

设函数u=f(r),r=√(x^2+y^2+z^2),则э^2u/эx^2+э^2u/эy^2+э^2u/эz^2=

эu/эx=f'(r)*эr/эx=f'(r)*x/rэ^2u/эx^2=f''(r)*(x/r)^2+f'(r)*(r-x*x/r)/r^2=f''(r)*(x/r)^2+f'(r)*(r^2-x^

设z=ln(x^2+y),求

∂z/∂x=(1/(x²+y))(2x)=2x/(x²+y)∂²f/∂x∂y=∂[∂z

高数题 设函数z=ln(1+x^2+y^2),则dz=多少?

∂z/∂x=2x/(1+x^2+y^2)∂z/∂y=2y/(1+x^2+y^2)dz=∂z/∂xdx+∂z/W

设u=ln√(x^2+y^2+z^2) 求du

ux=2x/(x^2+y^2+z^2)uy=2y/(x^2+y^2+z^2)uz=2z/(x^2+y^2+z^2)故du=uxdx+uydy+uzdz=2x/(x^2+y^2+z^2)dx+2y/(x

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设z=uv,u=e^(x+y),v=ln(xy)求dy

dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

设随机变量X~U(0,1) 求Y= -2ln(x 概率密度

Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(

设函数z=ln(x+y),则az/zx|(1.1)

z=ln(x+y)az/ax=1/(x+y)所以az/ax|(1,1)=1/(1+1)=1/2

设z=ln(u平方+v),u=x-y平方,v=x平方y,求 偏导z/x 偏导 z/y?

∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z

设y=ln(x+√1+x平方)则y"=

y=ln(x+√(1+x^2))y'=[1+2x/2√(1+x^2)]/(x+√(1+x^2))=(√(1+x^2)-x)*(√(1+x^2)]+x)/√(1+x^2)=1/√(1+x^2)y''=-

设x/z=ln*z/y ,求求az/ax,az/ay,a²z/axay

设x/z=ln(z/y),求∂z/∂x;∂z/∂y;∂²z/∂x∂y;由x/z=ln(z/y)得x=z(l

设z=ln(x+y),则dz=

dz=dx/(x+y)+dy/(x+y)