设un>0,且数列nun有界

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:08:13
设un>0,且数列nun有界
若存在常数M>0,对任意的n∈N',恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M,则称数列{un}

是递减数列咯,它们之间的距离越来越小才会存在M,越来越大就是发散数列了.这种数列也叫收敛数列,数学书上有的啊.

证明:若{Un}满足Lim(n→∞)nUn=1,则∞∑(n=1) (-1)^n(Un+Un+1)收敛

其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

举例说明,数列un绝对值收敛,数列un未必收敛

看错题目了.Un=(-1)^n即可,|Un|->1,但是Un发散

设数列Xn有界,又limYn=0 证明limXnYn=0

数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!

若lim Un=A>0,用数列定义证明lim Un+1 / Un =1

∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

设数列{Xn}有界,又lim Yn=0,证明:lim XnYn=0

用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|

设数列{Un}收敛,则n→∞时limUn=limUn+k是否成立

设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

设数列{Xn}有界,又limYn=0,证明:limXnYn=0

数列Xn有界,即!Xn!0,总有N>0使得当n>N时!Yn-0!0,总有N>0使得当n>N时!XnYn-0!

设数列Xn有界,lim(yn)=0,证明lim(xn*yn)=0

因为{xn}有界,则存在M>0,有|xn|0,存在N>0,当n>N,有|yn-0|0,当n>N,有|xn*yn-0|

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

设数列{Xn}有界,又LimYn=0,证明:LimXnYn=0.本人课没上,

因为{Xn}有界,不妨设limXn在x趋于无穷大时,limXn小于等于M,然后有LimXnYn小于等于M*LimYn=0,所以有LimXnYn=0

设数列{X}有界,又有limY=0,证明:limXY=0

因为数列{X}有界,所以设绝对值X

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0