设x y ln(zy)=0求dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:57:20
由z=u²v²,其中u=x-y,v=x+y,题型:求复合函数的偏导数:z=(x-y)²(x+y)²,dz/dx=(x-y)²×2(x+y)+2(x-y
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
因为x、y都为自变量,不是宗量,故此题没有全微分,应只有偏微分.详解如下:对方程两边微分:左边:de^z=e^z*dz右边d[xyz+cos(xy)]=xydz+yzdx+xzdy-(sinxy)*(
z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
偏Z比偏Y=xf(x+y,e^xsiny)+xy(f1'+f2'e^xcosy),偏Z比偏x=z=yf(x+y,e^xsiny)+xy(f1'+f2'e^xsiny).
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导
2(x+y),2(x-y).下次弄个难点的
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
经济数学团队帮你解答,有不清楚请追问.请及时评价.
说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/
x=1,y=0代入方程:z=1+ln1-e^z,得:z=0.两边对x求偏导:∂z/∂x=1/(x+y)-e^z∂z/∂x,得:∂z/W
应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+
∂z/∂x把y看成常数所以1+0+∂z/∂x-2/[2√(xyz)]*y*(1*z+x*∂z/∂x)=01+∂z/&
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.