设x1,x2,···,xn为总体的一个样本,x1,x2,···,xn为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:31:36
设x1,x2,···,xn为总体的一个样本,x1,x2,···,xn为
已知数据x1,x2,x3,···xn的平均数为x拔,求下列各组数据的平均数

∵x1,x2,x3,···xn的平均数为x拔∴x1+x2+x3+...+xn=nx拔∴X1+5,X2+5,X3+5,···Xn+5的平均数为(x1+5+x2+5+.+xn+5)/n=(nx拔+5n)/

设{xn}为有界正实数列,求lim xn/(x1+x2+…xn) (n趋近于无穷)

limxn/(x1+x2+…xn)=0因为xn是一个有限的正实数,而(x1+x2+…xn)趋近于无穷,所以xn/(x1+x2+…xn)趋近于0.再问:不一定趋于无穷哦,比如1/2^n再答:是我没有考虑

记max{x1,x2,x3,...xn}为x1,x2,x3...xn中的最大数,设f(x)=2x-3,g(x)=-3x+

当f(x)》g(x)即2x-3》-3x+4,x》7/5时,Fx=2x-3,当x《7/5时,Fx=-3x+4.

线性代数 向量空间:设V1={x=(x1,x2,...xn)|xi为实数,满足x1+x2+...+xn=0},V1是否为

在矩阵加法和数乘运算之下可以构成向量空间.由于V1是R^n的子集,而且若x和y是V1中的两个元素,则容易得到,对数k有kx和x+y也是V1的元素.从而由子空间判别定理可知V1是R^n的子空间,因此是向

记实数x1,x2.xn中的最大数为max{x1,x2.xn}.最小数为min{x1,x2.xn}

必要不充分必要性:∵三角形ABC为等边三角形max{a/b,b/c,c/a}=min{a/b,b/c,c/a}=1∴I=1不充分充:存在不为等边三角形的三角形ABC,其中a=3,b=2,c=2使得l=

若x1,x2···xn的方差为S²,则S²=(x1²+x2²+···xn

根据定义知:x1+x2+...+xn=n*x拔S^2=[(x1-x拔)^2+(x2-x拔)^2...+(xn-x拔)^2]÷n=[x1²+x2²+···xn²+n*x拔^

X1·X2·X3·…·Xn=1,且X1,X2,…,Xn都是正数,求证(1+X1)(1+X2)…(1+Xn)>=2的n次

数学归纳法:1.n=1时,x1∈(0,+∞),且x1=1,则1+x1=2≥2^1=2,成立;2.假设n=k(k∈N)时不等式成立,即x1,x2,x3,…,xk∈(0,+∞),(即数列中的元素为正),且

设一组数据x1,x2···xn的平均数x拔,方差为S平方.求:ax1,ax2···,axn的方差

x1,x2···xn的平均数x拔那么ax1,ax2···,axn的平均数就为ax拔那么方差就为s^2=1/n[(a-ax1)^2+……(a-axn)^2]把a^2提出后边就是s^2那么方差就是as

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设总体X~U(0,θ),X1,X2,···,Xn是取自该总体的一个样本.X0是样本平均数.

对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

伯努利不等式一般形式百科里说:伯努利不等式的一般式为 (1+x1+x2+x3···+xn)< =(1+x1)(1+x2)

这个不等式的条件是:xi全大于0或xi全在-1到0之间i=1,2.n换句话说,在xi大大于等于-1的前提下所有变量必须同号没问题的

设x1,x2,…,xn平均数为.x

根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.

如何证明“|x+x1+x2+···+xn|≥|x|-(|x1|+|x2|+···+|xn|)”?

由三角不等式可以得到|x+x1+x2+···+xn|≥|x|-|x1+x2+···+xn|因为|x1+x2+···+xn|

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差

1,已知X1·X2·X3…·Xn=1,且X1,X2,…Xn都是正数,求证:

1.∵X1,X2,…Xn都是正数,根据重要不等式1+x1≥√x11+x2≥√x2……1+xn≥√xn∴n个不等式左右相乘有(1+X1)(1+X2)…(1+Xn)≥2^n√x1√x2√xn=2^n√x1