设x1x2是来自参数为 的泊松分布总体的一个样本

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:28:56
设x1x2是来自参数为 的泊松分布总体的一个样本
设X1 X2 ...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即X~f(x,λ)=λexp(-λx) 求X(

xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本

根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说E(c*X的平均值)=θ又由期望的性质E(c*X的平均值)=cE(X的平均值)=θ那么E(X的平均值)=θ/c又E(X的平均值)其

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

一道大学概率论问题设总体X服从参数为m,p的二项分布,m已知,p未知,(x1,.Xn)是来自总体X的一个简单随机样本,求

该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对

设x1,x2是一元二次方程x2-3x-1=0的两个实数根,则x12+x22+4x1x2的值为______.

∵x1,x2是一元二次方程x2-3x-1=0的两个实数根,∴x1+x2=-−31=3,x1•x2=−11=-1,则x12+x22+4x1x2=(x1+x2)2+2x1x2=32+2×(-1)=7.故答

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设x1x2为方程x²-kx(x-2)+2-k=0的两个实数根.且x1平方+x1x2+x2平方=11/2求k

x^2-kx(x-2)+2-k=0(1-k)x^2+2kx+2-k=0x1+x2=-2k/(1-k)=2k/(k-1)x1x2=(2-k)/(1-k)=(k-2)/(k-1)x1^2+x1x2+x2^

设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,

1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C

设x1,x2是一元二次方程x^2-3x-2=0的二个实数根,则x1+x1x2+x2的值为_____.

x²-3x-2=0x₁+x₂=-b/a=3;x₁x₂=c/a=-2;∴x₁+x₁x₂+x₂=3

设X服从0-1分布,X1,X2.XN是来自X的一个样本,试求参数P的极大似然估计值

P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x

设方程3∧x=|以10为底(-x)的对数|的两个根为x1,x2,则() A,x1x2<0 B,x1x2=1 C,x1x2

再答:再问:以10为底(-x)的对数在(0,正无穷大)上没有定义,为什么当-x>1时还有以10为底(-x)的对数>0再答:这时-x是大于1的正数.lg(-x)有意义再答:-x>1,则lg(-x)>lg

设x1x2是关于x的方程x^2+px+q=0的两个实数根,且x1^2+3x1x2+x2^2=1,

根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/

设x1x2为方程x平方+px+q=0的两根,那么x1+x2=-p,x1x2=q,所以p=-(x1+x2),q=x1x2,

1.已知关于x的方程x²+mx+n=0(n≠0),求出一个一元二次方程使它的两个根分别是已知方程两根的倒数.设方程x²+mx+n=0(n≠0)的二根为x₁和x̀