设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:15:20
设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本
-x 为样本均值,cx¯为θ的无偏估计(cx-为c乘以x的平均值),则常数c等于多少
-x 为样本均值,cx¯为θ的无偏估计(cx-为c乘以x的平均值),则常数c等于多少
根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说
E(c*X的平均值)=θ
又由期望的性质
E(c*X的平均值)=cE(X的平均值)=θ
那么
E(X的平均值)=θ/c
又E(X的平均值)其实就是总体均值,也就是2θ
那θ/c=2θ,c就等于1/2
再问: E(X的平均值)是总体均值
再答: 其实是这样的,X的平均值等于1/n倍的X1+X2+……+Xn。 那E(X的平均值)=1/nE(X1+……+Xn)=(1/n)*nE(X1)=E(X1)=E(X)=2θ
再问: 知道了,谢谢哈
E(c*X的平均值)=θ
又由期望的性质
E(c*X的平均值)=cE(X的平均值)=θ
那么
E(X的平均值)=θ/c
又E(X的平均值)其实就是总体均值,也就是2θ
那θ/c=2θ,c就等于1/2
再问: E(X的平均值)是总体均值
再答: 其实是这样的,X的平均值等于1/n倍的X1+X2+……+Xn。 那E(X的平均值)=1/nE(X1+……+Xn)=(1/n)*nE(X1)=E(X1)=E(X)=2θ
再问: 知道了,谢谢哈
设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本
设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别
设 X1,X2,X3.Xn为来自总体 X的样本,已知总体的分布密度函数为:[f(
设总体X~P(λ),则来自总体X的样本X1,X2.Xn的样本概率分布为
设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y
设总体X的概率密度为f(x),X1,X2……Xn是来自X的样本,求θ的矩估计量和最大似然估计量
设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,
设X~π(λ),其中λ>0为未知,X1,X2,……Xn为来自总体的一个样本,求概率p=P{X=0}的
设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,
设X1,X2,X3……,Xn为总体X的一个样本,X的密度函数f(x)=βx^(β-1),0
设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计