设X1X2是来自参数为的泊松分布总体的一个样本,试求最大似然估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:39:13
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说E(c*X的平均值)=θ又由期望的性质E(c*X的平均值)=cE(X的平均值)=θ那么E(X的平均值)=θ/c又E(X的平均值)其
服从~N(u,σ^2/n)正态分布
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
∵x1,x2是一元二次方程x2-3x-1=0的两个实数根,∴x1+x2=-−31=3,x1•x2=−11=-1,则x12+x22+4x1x2=(x1+x2)2+2x1x2=32+2×(-1)=7.故答
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
x^2-kx(x-2)+2-k=0(1-k)x^2+2kx+2-k=0x1+x2=-2k/(1-k)=2k/(k-1)x1x2=(2-k)/(1-k)=(k-2)/(k-1)x1^2+x1x2+x2^
1、∑(Xi-x)^2/σ^2~χ(n-1)2、样本方差S^2的定义:S^2=(1/(n-1))*∑(Xi-x)^2两者系数比较一下,选择C
楼上的.是"Pleasestudyhard.”
x²-3x-2=0x₁+x₂=-b/a=3;x₁x₂=c/a=-2;∴x₁+x₁x₂+x₂=3
P(X=1)=pP(X=0)=1-p所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a)a=0或1p未知,p∈[0,1]样本为X1……XN所以似然函数是L(x1,x2……xn;p)=(p^x
再答:再问:以10为底(-x)的对数在(0,正无穷大)上没有定义,为什么当-x>1时还有以10为底(-x)的对数>0再答:这时-x是大于1的正数.lg(-x)有意义再答:-x>1,则lg(-x)>lg
根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/
1.已知关于x的方程x²+mx+n=0(n≠0),求出一个一元二次方程使它的两个根分别是已知方程两根的倒数.设方程x²+mx+n=0(n≠0)的二根为x₁和x̀