设x与y是两个相互独立的随机变量,并且均服从区间(0,1)上的均匀分布,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:13:36
xy为独立变量,D(2X-3y)=2^2Dx+3^2DY=4*6+9*3=51
这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x
解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.
var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5
P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,
Fz(z)=1-P(Z>z)=1-P(X>z,Y>z)=1-P(X>z)P(Y>z)=1-(1-Fx(z))(1-Fy(z))
如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n
X的概率密度f(x)=1,希望可以帮到你,不懂的再追问再问:还真的不懂,有过程吗?!再答:对于X在(a,b)上服从均匀分布,可以得概率密度f(x)=1/(b-a)
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
EX=-1/3+1/3=0EXY=EX^3=1/3*(-1)^3+1/3*1^3=0Cov(X,Y)=EXY-EXEY=0P(X=1,Y=0)=0P(Y=0)=P(X=0)=1/3P(x=1)*P(Y
事件A与事件~A构成概率空间若A与B相互独立,则事件B与A与事件~A构成概率空间之间独立故A的逆与B也相互独立
题目错了,正确的命题应该是:设X和Y为两个随机变量,若对于任意的x和y,X和Y是相互独立的充要条件是P{X
首先填x1,y1吧,就是因为P11+P21=P.j,所以有P11=1/6-1/8=1/24然后填P1.,因为P1.*P.1=P11,所以P1.=(1/24)/(1/6)=1/4然后再用P11+P12+
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了
假定X,Y的联合分布为f_(X,Y)(x,y),则因为X与Y独立,f_(X,Y)(x,y)=f_X(x)f_Y(y)显然,随机向量(X^2,Y^2)是随机向量(X,Y)的一个变换,则有:f_(X^2,
因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果
A={(X+Y)-|X-Y|}/2,B={(X+Y)+|X-Y|}/2X-Y服从N(0,2σ²)E|X-Y|=σ/√πEA=μ-σ/2√πEB=μ+σ/2√π再问:应该是对了,不过我算的E|
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0