设X是服从标准正态分布,求Y=X的平方的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:15:35
用卷积公式求得Z的概率密度函数,配方太麻烦所以提到最前面写.与x无关的项作为“系数”提到关于X的积分外面,然后构造关于x的正太分布密度函数积分,积分结果=1,积分号以外的“系数”就是要求的结果,为目标
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
你好!定理是当X与Y独立时,X+Y服从正态分布,而当X与Y不独立时,X+Y不一定服从正态分布。经济数学团队帮你解答,请及时采纳。谢谢!
对于选项(A):两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,因为X和Y不是相互独立的.倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布,否则不一定
2X^2/(X^2+Y^2)服从F(1,2)所以,所求期望为F(1,2)的期望的一半.
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z
FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z
1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.
一个线性函数的正常分布或正态分布E(Y)=(1-2X)?=1-2EX=1D(Y)=D(1-2X)=4D(X)=4因此,YN(1,4)
由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立
再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减
fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)