设y=lnx x则d2y dx2=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:07:44
dx/dy=x'(y)y=x+lnx,对等号两边求导∴1=x'+x'/x∴x'(1+1/x)=1∴dx/dy=x'=x/(x+1)
--2xdx,负2xdx再问:过程呢再答:这是个非常简单的微分运算,如果你是自学高等数学你可以上网搜‘’‘’‘’微分;;;;过程就是根据求导法则,
(1)定义域为(0,+∞),∴f′(x)=1-lnxx2,令f′(x)=0,解得x=e,当f′(x)>0,解得0<x<e,当f′(x)<0,解得x>e,∴f(x)的单调递增区间为(0,e);f(x)的
Dx^y+x^-y=2根号2===>(x^y+x^-y)^2=8===>x^2y+x^-2y+2=8===>x^2y+x^-2y=6(x^y-x^-y)^2=x^2y+x^-2y-2=6-2=4==>
x>0,y>0则x+y>=2(xy)^(1/2)xy-(x+y)=1xy-2(xy)^(1/2)-1>=0解得(xy)^(1/2)=1+2^(1/2)又xy>0xy>=(1+2^(1/2))^2=3+
dy=(1/x)dx这个是要记住的,所有基本函数的导数公式都应该记住
y=ln(1+x)y'=1/(1+x)y''=-1/(1+x)²熟记求导公式
x=y*e^(-y)故dx/dy=e^(-y)+y*(-e^(-y))=(1-y)*e^(-y)故dy/dx=e^y/(1-y)再问:是吧dy/dx看成分数的是吧?
函数的定义域为(0,+∞),则函数的导数为f′(x)=1x•x−(1−m+lnx)x2=m−lnxx2,由f′(x)=m−lnxx2>0,即lnx<m,即0<x<em,此时函数单调递增,由f′(x)=
(I)求导函数,可得f′(x)=−lnxx2∵x≥1,∴lnx≥0,∴f′(x)≤0∴f(x)在[1,+∞)上单调递减;(II)f(x)≥kx+1恒成立,即(x+1)(1+lnx)x≥k恒成立,记g(
y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2
(1)∵f (x)定义域为(0,+∞),∴f′(x)=1−lnxx2(2分)∵f (1e)=-e,∴切点为(1e,-e)又∵k=f′(1e)=2e2.∴函数y=f (x)
y'=1/(1+x)*(1+x)'=1/(1+x)y''=-1/(1+x)²*(1+x)'=-1/(1+x)²
求导即可因为(tanx)'=sec^2x所以dy=sec^2xdx
∵f(x,y)=ln[x(1+2/y)]=lnx+ln(1+2/y)∴αf(x,y)/αy=(-2/y^2)/(1+2/y)=-2/[y(y+2)]即αf(1,1)/αy=-2/[1*(1+2)]=-
y′=(lnx)′=1x,令1x=12得x=2,∴切点为(2,ln2),代入直线方程y=12x+b,∴ln2=12×2+b,∴b=ln2-1.故答案为:ln2-1
y'=x*(lnx)'+lnx=1+lnxy''=1/x所以y'=1+lnxy''(1)=1/1=1
(Ⅰ)∵y=lnxx∴y′=1−lnxx2∴l的斜率k=y′|x=1=1∴l的方程为y=x-1证明:(Ⅱ)令f(x)=x(x-1)-lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x-1)-l
f(x+y,xy)=x^2+y^2=(x+y)^2-2xyf(x,y)=x^2-2y