设y=lnx x则d2y dx2=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:07:44
设y=lnx x则d2y dx2=
设y=x+lnx,则dx/dy=

dx/dy=x'(y)y=x+lnx,对等号两边求导∴1=x'+x'/x∴x'(1+1/x)=1∴dx/dy=x'=x/(x+1)

设y=f(-x^2) 则dy=

--2xdx,负2xdx再问:过程呢再答:这是个非常简单的微分运算,如果你是自学高等数学你可以上网搜‘’‘’‘’微分;;;;过程就是根据求导法则,

已知函数f(x)=lnxx

(1)定义域为(0,+∞),∴f′(x)=1-lnxx2,令f′(x)=0,解得x=e,当f′(x)>0,解得0<x<e,当f′(x)<0,解得x>e,∴f(x)的单调递增区间为(0,e);f(x)的

设x>1,y>0,若x^y+x^-y=2根号2,则x^y-x^-y等于

Dx^y+x^-y=2根号2===>(x^y+x^-y)^2=8===>x^2y+x^-2y+2=8===>x^2y+x^-2y=6(x^y-x^-y)^2=x^2y+x^-2y-2=6-2=4==>

设X,Y属于正实数,xy-(x+y)=1,则x+y最小值

x>0,y>0则x+y>=2(xy)^(1/2)xy-(x+y)=1xy-2(xy)^(1/2)-1>=0解得(xy)^(1/2)=1+2^(1/2)又xy>0xy>=(1+2^(1/2))^2=3+

设y=ln(x)则dy=?

dy=(1/x)dx这个是要记住的,所有基本函数的导数公式都应该记住

设函数y=ln(1+x),则y''=?

y=ln(1+x)y'=1/(1+x)y''=-1/(1+x)²熟记求导公式

设函数y=xe^y,则dy/dx=?

x=y*e^(-y)故dx/dy=e^(-y)+y*(-e^(-y))=(1-y)*e^(-y)故dy/dx=e^y/(1-y)再问:是吧dy/dx看成分数的是吧?

已知函数f(x)=1−m+lnxx

函数的定义域为(0,+∞),则函数的导数为f′(x)=1x•x−(1−m+lnx)x2=m−lnxx2,由f′(x)=m−lnxx2>0,即lnx<m,即0<x<em,此时函数单调递增,由f′(x)=

已知函数f(x)=1+lnxx,(x≥1).

(I)求导函数,可得f′(x)=−lnxx2∵x≥1,∴lnx≥0,∴f′(x)≤0∴f(x)在[1,+∞)上单调递减;(II)f(x)≥kx+1恒成立,即(x+1)(1+lnx)x≥k恒成立,记g(

设 y=4 arctan x ,则y'(1)=?

y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2

已知函数y=f (x)=lnxx.

(1)∵f (x)定义域为(0,+∞),∴f′(x)=1−lnxx2(2分)∵f (1e)=-e,∴切点为(1e,-e)又∵k=f′(1e)=2e2.∴函数y=f (x)

设y=ln(1+x)则y’= y”=

y'=1/(1+x)*(1+x)'=1/(1+x)y''=-1/(1+x)²*(1+x)'=-1/(1+x)²

设y=tanx 则dy=

求导即可因为(tanx)'=sec^2x所以dy=sec^2xdx

设f(x,y)=ln[x(1+2/y)],则y偏导等于

∵f(x,y)=ln[x(1+2/y)]=lnx+ln(1+2/y)∴αf(x,y)/αy=(-2/y^2)/(1+2/y)=-2/[y(y+2)]即αf(1,1)/αy=-2/[1*(1+2)]=-

设直线y=12

y′=(lnx)′=1x,令1x=12得x=2,∴切点为(2,ln2),代入直线方程y=12x+b,∴ln2=12×2+b,∴b=ln2-1.故答案为:ln2-1

设 y=x*ln x ,则 y'=y"(1)=

y'=x*(lnx)'+lnx=1+lnxy''=1/x所以y'=1+lnxy''(1)=1/1=1

设l为曲线C:y=lnxx在点(1,0)处的切线.

(Ⅰ)∵y=lnxx∴y′=1−lnxx2∴l的斜率k=y′|x=1=1∴l的方程为y=x-1证明:(Ⅱ)令f(x)=x(x-1)-lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x-1)-l

设f(x+y,xy)=x^2+y^2,则f(x,y)

f(x+y,xy)=x^2+y^2=(x+y)^2-2xyf(x,y)=x^2-2y