设z=e^sinxy 则dz=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:40:18
可以使用全微分公式求解,对方程分别对x,y求偏导,可得:偏Z偏X=1/(e^yz-1);偏Z偏Y=[z(e^yz)-z-x]/[y-y(e^yz)];dz=(偏z偏x)dx+(偏z偏y)dy;电脑不好
z'x=2e^(2x+y)z'y=e^(2x+y)所以dz=2e^(2x+y)dx+e^(2x+y)dy
1,等式两边对x进行求导,然后分离出dz,结果为:(1+x/z^2)dz=(1/z)dx-e^ydy,然后再把dz前面的那块除到等式的右边就可以了.2,用极坐标求积分,就是画出积分区域,应该是位于第一
两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
Zxe^z=YZ+XYZx,Zx=YZ/(e^z-XY)Zy=XZ/(e^z-XY)dZ=Zxdx+Zydy=(ydx+xdy)Z/(e^z-xy)再问:设F(x,y,z)=e^z-xyzə
因为x、y都为自变量,不是宗量,故此题没有全微分,应只有偏微分.详解如下:对方程两边微分:左边:de^z=e^z*dz右边d[xyz+cos(xy)]=xydz+yzdx+xzdy-(sinxy)*(
z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1
再问:非常感谢,还要问大侠一道题面目。曲线y=x³+3x的拐点坐标为???再答:y'=3x²+3y''=3x令y"=0,得x=3当x=3时,y=36所以拐点坐标(3,36)
x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><
e^x(1/y1)x^(y1)再问:亲,经多方证实你的答案是错误的,不过你是唯一回答我的人,我还是采纳了
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
zx=1/(1+(x/y)²)*1/y=y/(x²+y²)zy=1/(1+(x/y)²)*(-x/y²)=-x/(x²+y²)所以
dz=[2e^(2x+y)]dx+[e^(2x+y)]dy
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/
由z=exy得zx=yexy,zy=xexy∴dz=yexydx+xexydy
dz=dx/(x+y)+dy/(x+y)