设Z=U^V,U=x y,V=x-y,求X的偏导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:10:47
设Z=U^V,U=x y,V=x-y,求X的偏导
设z=u^2v^2,而u=x-y,v=x+y,求dz/dx,dz/dy

由z=u²v²,其中u=x-y,v=x+y,题型:求复合函数的偏导数:z=(x-y)²(x+y)²,dz/dx=(x-y)²×2(x+y)+2(x-y

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

多元函数微分 隐函数 函数z=z(x,u)由方程组x=f(u,v),y=g(u,v),z=h(u,v)所确定,求z对x的

偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.

设z=u^2cosv^2,u=x+y,v=xy,求dz/dx,dz/dy.

z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y

设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则∂

∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′

若f(u,v,w)=(u-v)^w+w^(u+v) 则f(x+y,x-y,xy)=

若f(u,v,w)=(u-v)^w+w^(u+v)f(x+y,x-y,xy)=[(x+y)-(x-y)]^xy+(xy)^[(x+y)+(x-y)]=(2y)^xy+(xy)^2x

z=f(u,v)=u^2-v^2,u=x+y,v=xy.求z对x的偏导.

z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&

函数z=u+v,而u=x+y,v=xy,那么对与z中对x的偏导为多少呢?

最容易理解的办法,代进去有z=x+y+xy那么对x偏导数有那个偏导数=1+y

u²+v²-x²-y=0 -u+v-xy+1=0 求∂u/∂x,&

x、y自变量,将式子对x偏导u²+v²-x²-y=0,对x求导2uu'+2vv'-2x=0uu'+vv'-x=0(1)-u+v-xy+1=0-u'+v'-y=0(2)联立

求(MATLAB)圆锥面x=u*sin(v) y=u*cos(v) z=u

symsuv;d=[-5:0.5:5];[uv]=meshgrid(d);x=u.*sin(v),y=u.*cos(v),z=u;surf(x,y,z)

设f(x,y)=xy+f(u,v)dudv,

∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+

设z=uv,u=e^(x+y),v=ln(xy)求dy

dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(

设z=u^2+v^2,且u=x+y,v=x-y,求dz/dx,dz/dy

2(x+y),2(x-y).下次弄个难点的

设二元函数 z=u^2,u=x+y v=x-y ,求dz/dx,dz/dy

dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系

设z=ln(eu+v),v=xy,u=x2-y2,求dz/dx,dz/dy.

说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=

偏导数 .急 设z=(e^u)sinv 而u=xy ,v=x+y 求 dz/dx,dz/dy

dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)

设y=u^v,u,v是x的可导函数,证明:dy/dx=u^v(v/u*du/dx+lnu*dv/dx)

y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx

设z=ln(u平方+v),u=x-y平方,v=x平方y,求 偏导z/x 偏导 z/y?

∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z