设z=xeu sinv,u=xy,v=x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:01:25
解:假设z=a+bi则u=(a^2-b^2-2)+2abi因为|z|=1,则a^2+b^2=1(数形结合分析可以知道-1
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
x^2+y^2+z^2-3xyz=0两边对x求偏导,2x+2z*dz/dx-3yz-3xydz/dx=0从中解得:dz/dx=(3yz-2x)/(2z-3xy)(1)同理:dz/dy=(3xz-2y)
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&
(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+
我是一名高中生,也没学过什么大学课本,但我可以帮你解决这个问题,导数是什么,是k,k是什么.是(y1-y2)÷(x1-x2).那么对于一个复合函数.(z1-z2)÷(y1-y2)的值乘以(y1-y2)
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+
dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
grad(u)=(∂u/∂x,∂u/∂y,∂u/∂z)=(y^2,2xy,3z^2),所以div(grad(u))=div(y^
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.