设z=xF(x y),其中F可微,试证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:09:36
设z=xF(x y),其中F可微,试证
设:z=f(x+y+z,yz),其中函数f可微,求∂z/∂x,∂x/∂z

经济数学团队帮你解答,有不清楚请追问.请及时评价.再问:大哥==看清楚提干啊再答:嗯?这就是结果没错啊.f是已知函数,所以其对于第一项与第二项元素的偏导也是已知的.再答:抱歉啊..看错题了...

设z(x,y)是方程F(x-y,y-z,z-x)=0所确定,其中F为可微函数,则δz/δx+δz/δy=?

令u=x-y,v=y-z,w=z-x,则F(u,v,w)=0,方程两边对x求偏导,其中z看做x,y的函数,则ðF/ðu*ðu/ðx+ðF/ð

1、设f可微,写出由方程f ( xy,yz,x-z ) = 0所确定的函数z = g (x,y)的偏导数Z'x和Z'y

df/dx=f'(xy,yz,x-z)(y+y*dz/dx+1-dz/dx)=0(1-y)dz/dx=f'(xy,yz,x-z)*(y+1)dz/dx=f'(xy,yz,x-z)*(y+1)/(1-y

设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

高数下册,全微分.设z=y/f(x²-y²),其中f可微,求Z′x/X+Z′y/Y .

z'x=-2xyf'(x²-y²)/f^2(x²-y²)z'y=[f(x²-y²)+2y^2f'(x²-y²)]/f^2

设f(x,y)具有一阶连续偏导数,z=xf(x^y,e^xy),求dz

根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(

设y=y(x)是由方程y^2f(x)+xf(y)=x^2确定,其中f(x)是x的可微函数,试求dy/dx.

两边对x求导:2yy'f(x)+y^2f'(x)+f(y)+xy'f(y)=2x则y'=[2x-f(y)-y^2f'(x)]/[2yf(x)+xf(y)]再问:给的那个f(x)是x可微函数什么意思再答

设u=f(z),而z是由方程z=x+yg(z)确定的函数,其中f,g均为可微函数.证明du/dy=g(z)du/dx.

z=x+yg(z)=>dz/dx=1+yg'(z)dz/dx=>dz/dx=1/(1-yg'(z))dz/dy=g(z)+yg'(z)dz/dy=>dz/dy=g(z)/(1-yg'(z))du/dy

设z=(x,y)由方程z=f(x,y,z)所确定,其中f为可微的三元函数,求dz

z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'

复合函数求导法设z=xy+xF(u),而u=y/x,F(u)可导,证明x*(z对x的偏导)+y*(z对y的偏导)=z+x

(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+

设函数z=1/xf(xy)+yg(x+y),其中f,g二次可导,求偏导数 就是求a^2z/axay

传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

设函数y=y(x)由方程y^2 f(x)+xf(x)=x^2确定,其中f(x)为可微函数,求dy.

两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)

这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……

设f为可微函数,z=z(x,y)是由方程y+z=xf(y∧2-z∧2)所确定的隐函数,证明xσz/σx-zσz/σy=y

证明:因为z=z(x,y)是由方程y+z=xf(y²-z²)所确定的隐函数,所以两边同时对x求导有∂z/∂x=f(y²-z²)-2xzf