设z属于c 则满足条件z=3 4i
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:09:14
是一个圆环,应该是以3为半径的圆的面积减去以2为半径的圆的面积答案是5π
设Z=a+bi;得:a+bi+(根号a^2+b^2)==2+i;实部虚部对应相等得:a=3/4;b=1即Z=3/4+i
设z=cosθ+isinθ,|z+2√2+i|^2=|(cosθ+2√2)+i(sinθ+1)|^2=(cosθ+2√2)^2+(sinθ+1)^2=(cosθ)^2+4√2cosθ+8+(sinθ)
由于1−z1+z=i,所以1-z=i+zi所以z=1−i1+i═(1−i)(1−i)(1+i)(1−i)=−2i2=−i则|1+z|=|1−i|=2故选C.
由于|z|=1,所以可设z=cosX+isinX所以|z+2根号2+i|=|cosX+2根号2+i*(sinX+1)|=根号((cosX+2根号2)^2+(sinX+1)^2)=根号((cosX)^2
解答过程如图 后面=√a*a+b*b=5/4
设z=a+bi(a,b∈R),代入已知等式:i(a+bi+1)=-3+2i整理,得(3-b)+(a-1)i=03-b=0a-1=0a=1b=3z的实部为1.再问:i除过
设z=a+bi所以z+z+|z的共轭|=a+根号(a^2+b^2)+bi=2+i所以b=1所以a+根号下(a^2+1)=2所以a=3/4所以z=3/4+i
∵复数z满足z(1-i)=2i,∴z=2i1−i=2i(1+i)(1−i)(1+i)=-1+i故选A.
设:z=x+yi|z+i|+|z-i|=|x+(y+1)i|+|x+(y-1)i|=4说明点Z(x,y)到点A(0,-1)、B(0,1)的距离之和等于定长4其集合表示的图形是椭圆焦点为A(0,-1)、
设z=a+bi,由题意得a+bi+sqrt(a^2+b^2)=2+i,得b=1,a+sqrt(a^2+b^2)=2,a=0.75所以z=0.75+i
∵|z|=1,∴可设z=cosα+isinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+2
两边同时乘以-i,z=-i(2-i)=-1-2i
(1),A的轨迹是以(2,-1)为圆心2为半径的圆及其内部,B的轨迹是C(2,1)和D(4,-1)的垂直平分线,所以M的轨迹是一条线段,此线段的斜率K与CD的斜率乘积为-1,可算出K=1,而且过CD中
f(z1-z2)=z1-z2=(3+4i)-(-2-i)=3+4i+2+i=5+5i
1.(1)实数z=a,|a-3+i|=5,√[(a-3)²+1²]=5,a=3±2√6(2)纯虚数z=bi,|bi-3+i|=|-3+(b+1)i|=5,√[9+(b+1)&sup
∵|z|=|z拔|,∴由题设得z+|z拔|=2+i,===>z=(2-|z|)+i.两边取模,|z|²=(2-|z|)²+1.===>|z|=5/4.∴z=(3/4)+i
由于z满足条件|z|=1的复数z对应点都在以原点O为圆心的单位圆上,而|z+22+i|表示复数z对应点与复数-22-i对应点M间的距离,再由|OM|=8+1=3,可得|z+22+i|的最大值为|OM|
|z-3i|即z到(0,3)距离所以|Z-3i|+|Z+3i|=10表示z到(0,±3)两点的距离和等于10所以是椭圆而|z-6i|就是z到(0,6)距离(0,6)在长轴所以最大距离就是z在(0,-3
设z=a+bi∴i(a+bi+i)=ai-b-1=-(b+1)+ai=-3+2i根据对应关系b+1=3,a=2∴a=2,b=2