设Z平方-2xz y=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 01:33:19
设Z=a+bi;得:a+bi+(根号a^2+b^2)==2+i;实部虚部对应相等得:a=3/4;b=1即Z=3/4+i
z=1+2/i=1-2iz²+3z=(1-2i)²+3(1-2i)=-3-4i+3-3i=-7i从而其共轭复数的虚部为7.再问:是3乘(z的共轭复数)不是(z平方+3z)的共轭复数
(1)要使Z为纯虚数,则必须使实数项为0.即m的平方+3m-4=0,且m的平方-2m-24不等于0,根据第一个式子的出(m+4)*(m-1)=0.m=-4或者m=1.根据第二个不等式的出(m+4)*(
解答过程如图 后面=√a*a+b*b=5/4
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
亲!再问:。。。呀。~~谢谢。~帮大忙啦。~不过那个根号2i的平方是怎么算出来是-2的。?==再答:亲,因为i^2=-1
设Z=a+bi(a,b属于R)z的模=1所以a的平方+b的平方=1z的平方-z=0所以a的平方-b的平方-a+(2ab-b)i=0{a的平方-b的平方=0{2ab-b=0{a的平方+b的平方=1三个一
设z=a+bi,1/(a+bi)=(a-bi)/(a^2+b^2)=1/2,显然b=0,a/(a^2+b^2)=1/2;a=2.得z=2
设z=a+bi所以z+z+|z的共轭|=a+根号(a^2+b^2)+bi=2+i所以b=1所以a+根号下(a^2+1)=2所以a=3/4所以z=3/4+i
设a=x-y,b=y-z,-a-b=z-x(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-2z)平方b^2+a^2+(-a-b)^2=(-a-b-
直接作差,然后配方5x^2+y^2+z^2-2xy-4x-2z+2=(4x^2-4x+1)+(x^2-2xy+y^2)+(z^2-2z+1)=(2x-1)^2+(x-y)^2+(z-1)^2结果是三个
设z=a+bi,由题意得a+bi+sqrt(a^2+b^2)=2+i,得b=1,a+sqrt(a^2+b^2)=2,a=0.75所以z=0.75+i
这类题目的求法课本中有相似的例子.
1.要使z为纯虚数,必须lg(m^2-2m-2)=0(m^2+3m+2)0即m^2-2m-2=1m-1且m-2∴m=32.要使z为实数,必须①lg(m^2-2m-2)=0且(m^2+3m+2)=0或②
x+y+2z=1x^2+y^2+z^2=1/2将上式代入下式消去x并按y的降幂处理,得到y^2-2(2z-1)y+5z^2-4z+1/2=0将该式看作一个关于y的二次方程,含z的部分为系数那么z的取值
∵|z|=|z拔|,∴由题设得z+|z拔|=2+i,===>z=(2-|z|)+i.两边取模,|z|²=(2-|z|)²+1.===>|z|=5/4.∴z=(3/4)+i
∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d
(x-4)2次方+1/4|x+y-z|=0x=4,x+y-z=0z-y=45x+3y-3z=20-3(z-y)=20-3*4=8(5x+3y-3z)2008次方=8^2008=4096^502末位是6