设z是一个随机变量,具有均匀概率密度x=sinz,y=cosz

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 01:30:00
设z是一个随机变量,具有均匀概率密度x=sinz,y=cosz
设X,Y是相互独立的随机变量,π(λ1),π(λ2)证明Z=X+Y~π(λ1+λ2)

X,Y是相互独立,Z=X+Y,则有f(z)=f(x)*f(y)*为卷积

设连续型随机变量X具有概率密度 求

(1)对kx+1积分,得0.5kx^2+x,把上下限0,2代入,得2k+2=1,得k=-0.5(2)把k的值代入得密度函数f(x)=-0.5x+1积分-0.25x^2+x,把上下限3/2,2代入,t得

大学概率习题现场解答设随机变量X与Y相互独立且具有同一分布律:X 0 1P 1/2 1/2则随机变量Z=max(X,Y)

我服了你了,这可是最基本的题目.你居然搞个现场解答,还不如到网上搜一下习题解答呐!

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设一个密度均匀的半球体占有空间区域 x^2+y^2+z^2≦R^2 试求该球体质心坐标

立体关于x,y轴对称,因此质心的x,y坐标为0.只需要计算z的坐标.先计算体积(用球坐标)x=rsinucosvy=rsinusinvz=rcosu这里02pi)rcosu*r^2sinudvdudr

设随机变量X具有概率密度函数,

具体的记不清楚了,没有公式编辑器也打不上,给你说一下思路.我们知道概率的期望,是用x*p,然后求和,这个是对于离散的来说如果对于连续的,应该用那一点的x乘以该点的概率值,即用x*f(x),再求和,我们

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设随机变量 Xi 的分布律是

http://hi.baidu.com/zjhz8899/album/item/f0a96a457402d767500ffea7.html

大学高数 设函数z=z(x,y)是由方程F(x+z/y,y+z/x)所确定的,其中F具有连续偏导数求偏z/偏x

[(1/y)*F1+{F2*(y+z)}/x^2]/(F1/y+F2/z)再问:能写一下具体过程吗?或者把草稿拍张照发过来也可以,解决了一定采纳!

设随机变量X与Y相互独立,F(x)与F(y)分别是它们的分布函数,另Z=min(X,Y),求Z的分布函数F(z).这题怎

F(z)=P(Z≤z)=P(min(X,Y)≤Z)=1-P(min(X,Y)>Z)=1-P(X>Z,Y>Z)=1-P(X>Z)P(X>Z)=1-[1-P(X≤Z)][1-P(Y≤Z)]=1-[1-F1

设随机变量X~U(0,1).求随机变量z=x/(1+x)的密度函数

你好,我们先把Z写成X的函数的形式,Z=g(X).发现这个函数在(0,1)上存可逆可导.这样我们可以利用X的密度函数以及g的反函数的倒数求出Z的密度函数.具体步骤如下:最后结果是在(0,0.5)这个区

顺便帮忙证明下:设X和Y是相互独立的随机变量,且X~π(λ1),π(λ2),证明Z=X+Y~

是X~π(λ)泊松分布证明:P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i

概率论问题填空题:设随机变量XY独立并且具有相同分不B(1,0.4),则Z=max(X,Y)的分布律为:_______我

回答:分布B(1,0.4)意味着P(X=1)=0.4,P(X=0)=1-0.4=0.6,P(Y=1)=0.4,P(Y=0)=1-0.4=0.6.故P(Z=0)=P(X=0)xP(Y=0)=0.6x0.

设X,Y,Z是三个随机变量,已知E(X)=E(Y)=1,E(Z)=-1;D(X)=D(Y)=D(Z)=2;P(X,Y)=

ρ(x,y)=cov(x,y)/(√D(x)√D(y))=[E(X,Y)-E(X)E(Y)]/2=0cov(x,y)=0同理cov(x,z)=1cov(y,z)=-1E(W)=E(X)+E(Y)+E(

设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y-Z的相关系数.

1.cov(X+Y,Y+Z)=cov(X,Y)+cov(X,Z)+cov(Y,Y)+cov(Y,Z).=cov(Y,Y)=D(Y);(不相关,所以cov(XY)=0;.)2.D(X+Y)=D(X)+D