设三阶矩阵a的特征值为1 2 3 则绝对值A的平方加E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:08:57
设三阶矩阵a的特征值为1 2 3 则绝对值A的平方加E
已知三阶矩阵A的特征值为-1,2,3,则(2A) ^(-1)的特征值为?

设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1

已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

设三阶矩阵A的特征值为1,-1,2.则行列式A等于多少?

行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2

设三阶矩阵A的特征值为 1,2,3,

令P=110101111则P^-1AP=diag(1,2,3)所以A=Pdiag(1,2,3)P^-1

设三阶矩阵A的特征值为-1.0.2,则4A-E的特征值为?

答案是-5,-1,7,用定义如图计算.经济数学团队帮你解答,请及时采纳.

已知3阶矩阵A的特征值为1、2、-3,则它的逆矩阵的特征值是?

|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

矩阵A的特征值为 2,则?A2-E的特征值怎么算?

利用特征值和特征多项式的关系设矩阵A的特征值x那么利用特征值与矩阵多项式关系可知A2-E的特征值为f(x)=x^2-1即有f(2)=2^2-1=3

已知三阶矩阵A的特征值为1,-2,3,则(2A)、 A^(-1)的特征值为?

|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

证明:若矩阵A为正定矩阵,则A的奇异值与特征值相同

对A做谱分解A=QDQ*,显然这一分解也可视作奇异值分解.

设a是三阶矩阵,特征值为2,2,3,则a^2的特征值为__________;a^2-2a+e的特征值为_

则a^2的特征值为4,4,9a^2-2a+e的特征值为1,1,4再问:谢谢你啦,,,

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.