设三阶矩阵a的特征值为1 2 3,对应的特征向量依次为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:15:53
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2
令P=110101111则P^-1AP=diag(1,2,3)所以A=Pdiag(1,2,3)P^-1
答案是-5,-1,7,用定义如图计算.经济数学团队帮你解答,请及时采纳.
|A|=2≠0可逆
不一定,一个东西只适应一个,不可能把所有的有点集于一身
|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:
知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点
利用特征值和特征多项式的关系设矩阵A的特征值x那么利用特征值与矩阵多项式关系可知A2-E的特征值为f(x)=x^2-1即有f(2)=2^2-1=3
列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1
题:已知矩阵A的特征值为k,求A的平方的特征值.由以下命题3知,上题答案为k^2.以下摘自我的某个答题,未加改动.命题3:(证明见后)若方阵A有特征值k,对应于特征向量ξ,当f(A)为A的幂级数(允许
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,
A2的特征值为1,1,4A2+2E的特征值为3,3,6
选A因为|xE-AT|=|(xE-A)T|=|xE-A|
参考http://zhidao.baidu.com/question/919393532214610219.html
由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.