设函数f(x)在点x0处可导,求下列极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:10:04
lim(f²(x)-f²(x0)/(x-x0)因式分解为:=lim(f(x)+f(x0))(f(x)-f(x0))/(x-x0)拆成两项=lim[(f(x)+f(x0)]*lim[
f(x)在x0三阶可导,因此二阶导函数f"(x)在x0的附近连续.考虑二阶导函数f"(x),其导数f'''(xo)≠0,因此在x0的附近单调;而f''(xo)=0,因此在x0的两侧二阶导函数变号.由定
lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1
[f(x0+h)-f(x0-h)]/2h=[f(x0+h)-f(x0-h)]/[(x0+h)-(x0-h)]所以lim(h→0)(f(x0+h)-f(x0-h))/2h=f'(x0)
lim(h>0)[f(x0)-f(x0-2h)]/h=lim(h>0)2*[f(x0)-f(x0-2h)]/2h=2*lim(h>0)[f(x0)-f(x0-2h)]/2h=2f'(x0)
6、B7、C8、D9、D10、C
(x0+h)-(x0-h)=2h因此根据极限的定义得limf(x0+h)-f(x0-h)/2h=f'(x0)再问:为什么可以直接(x0+h)-(x0-h)=2h再答:这就是极限的定义呀。limf(x0
(1)原式=lim△x→0f(x0−△x)−f(x0)−(−△x)=-lim△x→0f(x0−△x)−f(x0)−△x=-f′(x0)(2)limh→0f(x0+h)−f(x0−h)2h=12limh
0到π/2没什么过程吧,作个解释好了线y=f(x)在点(x0,f(x0))处切线的斜率即是f'(x0)斜率即是倾斜角a的正切值即tana=f'(x0)>0所以.你知道的.注:数学上切线的倾斜角的范围是
lim(x趋向于x0)(f((x+xo)/2))-f(x0))/x-xo设(x+xo)/2=t,则x=2t-xo,当x趋向xo时,显然t趋向xo=lim[f(t)-f(xo)]/(2t-2xo)且t趋
limf(x0+2h)-f(x0)/h=lim[f(x0+2h)-f(x0)/2h]*2=2limf(x0+2h)-f(x0)/2h=2f′(x0)=6
lim△x→0f(x0-△x)-f(x0)△x=-lim△x→0f(x0-△x)-f(x0) -△x=-f′(x0),故选C.
A.因为在x0处可导所以Δy/Δx在Δx->0时有极限.所以Δy的极限必须是0.否则Δy/Δx的极限就是无穷,不可导了.
很明显f(x0)=0.因为如果f(x0)不等于0,那么此式分母为0,分子是一个不为0的数,那么极限应该是无穷大.而题中极限为4,所以式中分子即limf(x)也应该为0,这样就是一个无穷小比无穷小,极限
lim(f(x0+7△x)-f(x0))/△x△x->0=lim7(f(x0+7△x)-f(x0))/△7△x△x->0=7f'(x0)
只要这两个曲线在x0处的切线斜率相同,且交于同一点.即f'(x0)=F'(x0)和f(x0)=F(x0)首先我们看充分性如果有f(x)-F(x)是x-x0的高阶无穷小用数学公式描述(1)lim[f(x
/>函数y=f(x)在点x0处可导,且f'(x0)=a则lim△x→0f(x0–△x)–f(x0)/△x=f'(x0)=a∴lim△x→0f(x0–2△x)–f(x0)/2△x=f'(x0)=a∴li
不好说.如分段函数f(x)=1/x,x≠0;f(x)=0,x=0.则lim(x→∞)f(x)=f(0),但f(x)在x=0处不连续.再如:常数函数f(x)=1,也满足题目每件,它在任一点都是连续的.