设函数f二阶可偏导,求函数z=xf(y2 x)的二阶偏导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:51:53
设函数f二阶可偏导,求函数z=xf(y2 x)的二阶偏导
设u=f(x,z)而z(x,y)是由方程z=x yP(z)所确定的函数,求du

dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,

设:z=f(x+y+z,yz),其中函数f可微,求∂z/∂x,∂x/∂z

经济数学团队帮你解答,有不清楚请追问.请及时评价.再问:大哥==看清楚提干啊再答:嗯?这就是结果没错啊.f是已知函数,所以其对于第一项与第二项元素的偏导也是已知的.再答:抱歉啊..看错题了...

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

隐函数的题设f(x+y,y+z)=1,其中f具有连续的二阶偏导数z=z(x,y)是此方程确定的隐函数求 z对x偏导后再对

隐函数求导法则:δz/δx=-(δF/δx)/(δF/δz).δF/δx=F1+y*F2,δF/δz=F1+F3,所以:δz/δx=-(F1+y*F2)/(F1+F3),F1,F2,F3分别是F对第一

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

设函数f(z)=1/((z+10)*(z+3)*(z-2)) 重赏!

首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

设z=(x,y)由方程z=f(x,y,z)所确定,其中f为可微的三元函数,求dz

z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'

设函数z=f(3x,x-y) ,其中f是可微函数,求∂z/∂x,∂z/∂

设z=f(u,v),u=3x,v=x-y,则,∂z/∂x=(∂f/∂u)*(∂u/∂x)+(∂f/∂v)

设函数z=∫tf(x^2+y^2-t^2)dt,其中函数f(x)有连续的导数,求∂^2z/∂x&

z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

设方程f(z/x,y/z)=0确定了函数z=z(x,y)且f具有连续偏导数求z对x的偏导和z对y的偏导

设:f1=偏f/偏(z/x),f2=偏f/偏(y/z),则由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x=f1[-z/x²+(1/x)(偏z/偏

设函数F(u,v ,w) 的偏导数连续,由F(x-y,y-z,z-x)=0确定隐函数z=z(x,y),求此隐函数的全微分

F(x-y,y-z,z-x)=0对x求偏导数(y是常量):F1+F2(-az/ax)+F3(az/ax-1)=0F(x-y,y-z,z-x)=0对y求偏导数(x是常量):F1(-1)+F2(1-az/