设函数f二阶可偏导,求函数z=xf(y2 x)的二阶偏导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:51:53
dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,
经济数学团队帮你解答,有不清楚请追问.请及时评价.再问:大哥==看清楚提干啊再答:嗯?这就是结果没错啊.f是已知函数,所以其对于第一项与第二项元素的偏导也是已知的.再答:抱歉啊..看错题了...
令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a
隐函数求导法则:δz/δx=-(δF/δx)/(δF/δz).δF/δx=F1+y*F2,δF/δz=F1+F3,所以:δz/δx=-(F1+y*F2)/(F1+F3),F1,F2,F3分别是F对第一
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'
设z=f(u,v),u=3x,v=x-y,则,∂z/∂x=(∂f/∂u)*(∂u/∂x)+(∂f/∂v)
z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
设:f1=偏f/偏(z/x),f2=偏f/偏(y/z),则由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x=f1[-z/x²+(1/x)(偏z/偏
F(x-y,y-z,z-x)=0对x求偏导数(y是常量):F1+F2(-az/ax)+F3(az/ax-1)=0F(x-y,y-z,z-x)=0对y求偏导数(x是常量):F1(-1)+F2(1-az/