设函数y=y(x),由方程ln(x² y)=x³y sinx,确定
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:50:18
两边对【x】求导,注意,y是x的函数,利用复合函数求导1/[1+(y/x)^2]×(y/x)'=1/2×1/(x^2+y^2)×(x^2+y^2)',也就是:x^2/(x^2+y^2)×(xy'-y)
首先你的题目应该有点错误,应该是y=ln(1+t)吧.先求y=y(x)在x=3处的导数:y'=dy/dx=(dy/dt)/(dx/dt)=[1/(1+t)]/(2t+2)=1/[2(1+t)^2],当
lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-
dy/dx=(dy/dt)/(dx/dt)=[2t/(1+t^2)]/[1-1/(1+t^2)]=2/t
直接在等式中零,x=0,y=y(0),可得关于y(0)的方程解出y(0)即可.具体:e^0*y(0)+lny(0)/1=0即-y(0)=lny(0)作图y1=-x,y2=ln(x),两者的交点的横坐标
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
x=0则lny=0y=1两边对x求导[1/(x²+y)]*(x²+y)'=3x²+cosx(2x+y')/(x²+y)=3x²+cosxy'=(x&s
两边都对x求导有(2x+dy/dx)/(xˆ2+y)=3xˆ2y+xˆ3dy/dx+cosx得dy/dx=(3xˆ4y+3xˆ2yˆ2+x&
x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz
不就是对x求导吗?把y看成中间变量y=y(x)说明要想导x要通过y这个中间变量两边对x求导:y^3+(3x*y^2)*dy/dx+(e^x)*siny+(e^x)*cosy*dy/dx=1/x下面你自
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
答:xy+ln(x+e^2)+lny=0……(1)两边对x求导:y+xy'+1/(x+e^2)+y'/y=0……(2)x=0代入(1)和(2)得:0+2+lny=0y+0+1/e^2+y'/y=0解得
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
两边对x求导得y+xy'=(1+y')/(x+y)y(x+y)+x(x+y)y'=1+y'y'[x(x+y)-1]=1-y(x+y)y'=[1-y(x+y)]/[x(x+y)-1]dy=[1-y(x+
y=ln(1+x)y'=1/(1+x)y''=-1/(1+x)²熟记求导公式
见图再问:不好意思啊~题目看错了,题目如图啊~
(0,-1)在曲线上,是切点对x求导cos(x²y)*(2xy+x²*y')+1/(2x-y)*(2-y')=0吧(0,-1)代入2-y'=0所以切线斜率k=y'=2所以是2x-y
1.对x=ln(x+y)求微分,得dx=(dx+dy)/(x+y),∴dy=(x+y-1)dx,∴dy/dx=x+y-1.2.e^(xy)+y^3-5x=0,①求微分得e^(xy)*(ydx+xdy)
min是指f(x)g(x)h(x)三个函数中的最小值
F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]