设函数z=yln(xy)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:26:16
设函数z=yln(xy)
偏导数设二次函数Z=X^xy,求∂z/∂x,∂z/∂y.

第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln

设函数f与g均可微,z=f(xy,lnx+g(xy)),则x*z关于x的微分-y*z关于y的微分=

设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/

求方程xy′=yln(y/x)的通解

令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x

微分方程xy′-yln y=0的通解是( )

可分离变量型,通解为y=exp(C*x)

高数微分方程xy'-yln y=0的通解,

dhy2603,这题太容易了,xy'-ylny=0①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有xy''-y'lny=0②,联立两式得,ylny*y''/y'-y'lny=

微分方程 通过变量换,求解微分方程的通解 xdy/dx+y=yln(xy)

设u=ln(xy)=lnx+lnydu=dx/x+dy/y原式化为dy/y+dx/x=ln(xy)dx/xdu=udx/xdu/u=dx/x得u=Cxln(xy)=Cx

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设方程xz+yz+xy=e的定函数z=z(x,y),求dz

两边同时微分zdx+xdz+zdy+ydz+xdy+ydx=0(x+y)dz+(y+z)dx+(z+x)dy=0dz=-[(y+z)dx+(z+x)dy]/(x+y)

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay

设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1

设函数z=z(x,y)由方程x+2y-z=3e^(xy-xz)确定,则dz(0,0)=?

x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

设函数z=xy-y/x,求全微分dz=

dz=(y+y/(X^2))dx+(x-1/x)dy,

设函数z=xyln(xy),求全微分dz

dz=[yIn(xy)+y]dx+[xIn(xy)+x]dy分开求导

设函数z=z(x,y)是由方程z+ez=xy所确定的隐函数,求全微分dz.

对左右两边求导:(1+ez)dz=ydx+xdy.dz=1/(1+ez).(ydx+xdy).

已知函数满足微分方程xy'=yln(yIx),且x=1时,Y=e^2是当x=-1时,Y=

xy'=yln(y/x)令y=xv,y'=v+x·dv/dx=v+x·v'v+x·v'=v·ln(v)v'=(vln(v)-v)/x∫dv/[v(ln(v)-1)]=∫1/xdx∫d(ln(v)-1)