设函数Z=Z(x,y)由方程e∧Z+x∧2y+lnZ=0确定

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:16:08
设函数Z=Z(x,y)由方程e∧Z+x∧2y+lnZ=0确定
设f(x,y,z)=e²yz²,其中z=z(x,y)是由方程x+y+z+xyz=0确定的隐函数,求x

这个题目很典型的再问:那怎么做呢再答:好,我马上帮你做http://hiphotos.baidu.com/laoshagua/pic/item/f7da058747c09b4bc75cc378.jpg

高数求偏导:设z=z(x,y)是由方程(e^x)-xyz=0

将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设z=z(x,y)由方程x/z=ln(y/2)所确定的隐函数 求∂z/∂y,∂z/&

z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

设z=z(x,y)是由方程(e^z)-xyz=0确定的隐函数,求偏导

对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)

◆高数 多元函数微分学 证明 "设x = x(y, z),y = y(x, z),z = z(x, y)都是由方程F(x

再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!

设函数z=z(x,y)由方程x+2y-z=3e^(xy-xz)确定,则dz(0,0)=?

x+2y-z=3e^(xy-xz)两边对x求导,z看成是x的函数求偏导得,y看成常数,得1-əz/əx=3(y-z-xəz/əx)e^(xy-xz)=><

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).

设函数z=(x,y)由方程x^2+z^2=2ye^z所确定,求dz

两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)