设向量组I:可由向量组II:线性表示, 则当
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:12:08
证:(1)反证.假如αs能由α1,α2,…αs-1线性表示由已知β可由向量组α1,α2,…αs线性表示所以β可由向量组α1,α2,…αs-1线性表示这与β不能由向量组α1,α2,…αs-1线性表示矛盾
因为r(a1,a2,a3)=3,所以a1,a2,a3线性无关又因为r(a1,a2,a3,a4)=3,所以a1,a2,a3,a4相关所以a4可由a1,a2,a3线性表示.因为r(a1,a2,a3,a5)
证明:由向量组[a+c,b+c]线性相关,得线性关系b+c=k(a+c)+m化解得(1-k)c=k*a+m-b假设k=1,得0=a+m-b,即b=a+m线性关系这与已知向量组[a,b]线性无关相矛盾,
设r(A)=r(B)=r则A的极大无关组A1可由B的极大无关组B1线性表示所以存在矩阵K满足A1=B1K--这里A1,B1是向量组构成的矩阵因为B1线性无关,所以r(K)=r(A1)=r所以K是r阶可
设r=3,s=2A1=A11B1+A21B2A2=A12B1+A22B2A3=A13B1+A23B2设常数使K1A1+K2A2+K3A3=0整理等到一个齐词方程租,由于方程个数小于其未知量那么根据定理
其实I能够被II表示,说明I的秩小于等于II的秩;若I线性无关,那么r=r(I)再问:谢了,挺好记的有个疑问:“其实I能够被II表示,说明I的秩小于等于II的秩”这个怎么证的啊?再答:从直观理解上来说
ifT={a1,a2,a3,a4,a5,a6,a7,a8}是6维向量组thenT的秩R(T)=6assmueT中有一个一下的向量可由其余向量线性表出thenR(T)》=7sotheassmuption
知识点:若A组可由B组线性表示,则R(A)
/>线性相关.2.A的逆的特征向量也是A的特征向量,设β是A的属于特征值a的特征向量则Aβ=aβ,得k+3=a2k+2=akk+3=a得k=1或k=-2.3.由已知,|A|=0,得t=-2.再问:13
证明:由已知向量组A能由向量组B线性表示所以r(B)=r(B,A).又由已知r(A)=r(B)所以r(A)=r(B,A)=r(A,B)所以向量组B能由向量组A线性表示.所以向量组A与向量组B等价.注:
(1)向量组a1、a2、a3、kb1+b2线性无关假如向量组a1、a2、a3、kb1+b2线性相关,则kb1+b2可由a1,a2,a3线性表示因为b1可由a1,a2,a3线性表示所以b2可由a1,a2
证一.由于a1,a2,...,am,B线性相关所以存在一组不全为0的数k1,k2,...,km,k使得k1a1+k2a2+...+kmam+kB=0则必有k≠0.否则k1a1+k2a2+...+kma
ifT={a1,a2,a3,a4,a5,a6,a7,a8}是6维向量组thenT的秩R(T)=6assmueT中有一个一下的向量可由其余向量线性表出thenR(T)》=7sotheassmuption
向量组A可由向量组B线性表示不可以推出A与B等价向量组A可由向量组B线性表示,向量组B可由向量组A线性表示,则向量组A与向量组B等价是要同时满足才可以
三角形ABCAB=向量aBC=向量bCA=向量a+向量b|向量a|-|向量b|<=|向量a+向量b|<=|向量a|+|向量b|在三角形内,任何两条边的长度相减(|向量a|-|向量b|),少于第三条边的
假设线性相关,那么存在不全为0的c1、c2、……cs、d使得:c1a1+c2a2+.……+csas+d(b1+b2)=0显然d不等于0,因为等于0,那么a.就线性相关了.那么b2=(-c1a1-c2a
题目不完整请追问再问:忘咯!没复制过来设向量组A:a1,a2,a3及向量组B:b1=3a1+2a2+2a3,b2=a1+2a2,b3=2a1+a3证明向量与A与向量B与等价再答:由已知,b1,b2,b
1.假设αr可由α1,α2,.,αr-1线性表出,则αr=k1α1+k2kα2+…+kr-1αr-1由条件知β=P1α1+P2α2+…+Prαr∴β=P1α1+P2α2+…+Pr(k1α1+k2kα2
选D.向量组1:a1,a2...ar可由向量组2:β1,β2...βs线性表示,可知向量组1的秩小于或等于向量组2的秩,从而有向量组1的秩必小于或等于s.若加上条件r>s,则可知向量组1线性相关.