设垄断厂商的产品的需求函数为p=12-0.4q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:56:19
设垄断厂商的产品的需求函数为p=12-0.4q
某垄断厂商成本函数TC=0.5Q^2+10Q,产品的需求函数为P=90-0.5Q.计算售价P=55时垄断者提供的产量和赚

当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由

垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3000,反需求函数为P=150-3.25Q.求:该垄断

(P=a-bQ)均衡条件:MR=SMC即a-2bQ=SMC,SMC=d(STC)/dQ=0.3Q^2-12Q+140=MR=150-2*3.25Q得到Q=20

某垄断厂商的产品需求函数为P = 1760-12Q,成本函数为TC =1/3Q^3-15Q^2+5Q+24000

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

假设一个垄断厂商面临的需求曲线为P=10–3Q,成本函数为TC=Q^2+2Q,求该厂商利润极大时的产量,价格和利润?

由题意得:MR=10-6QMC=2Q+2利润极大时MR=MC得:Q=1P=10-3Q=7利润R=PQ-TC=8Q-4Q2=4

某垄断厂商的产品需求函数为P = 10-3Q,成本函数为TC = Q2 + 2Q,垄断厂商利润最大时的产量、价格和利润

垄断厂商利润最大化的条件是MR=MCMR=dTR/dQ=d(P*Q)/dQ=10-6QMC=dTC/dQ=2Q+2由MR=MC得到10-6Q=2Q+2得到Q=1;P=7利润=TR-TC=4

设某垄断厂商的产品需求函数为P=12-0.4Q,总成本函数TC=0.6Q2+4Q+5,试求:

(1)总收益TR=PQ=12Q-0.4Q^2①对①求极值得,Q=15,P=6时MaxTR=90而总利润=TR-TC=90-200=-110(2)总利润不小于10得不等式TR-TC=8Q-Q^2-5≥1

假设一个垄断厂商面临的需求函数为P=10-3Q,成本函数为TC=Q2+2Q.

解.依题可得MR=10-6Q;MC=TC'=2Q+2利润最大时有MR=MC即10-6Q=2Q+2解得Q=1P=10-3=7利润=PQ-TC=1*7-(1+2)=4

完全垄断厂商的产品的需求函数为P=12-0.4Q,总成本函数TC=0.6Q^2+4Q+5,求Q为多少时总利润最大,价格,

1.总收益:TR=P*Q=12Q-0.4Q^22.总利润=TR-TC=(12Q-0.4Q^2)-(0.6Q^2+4Q+5)3.求导等于0时利润最大,求得Q=4,P=10.4,总利润=11再问:为什么等

垄断厂商产品的需求函数为P=12-0.4Q,总成本函数TC=0.6Q2+4Q+5,求

1MR=12-0.8QMC=1.2Q+4(都是求导得出)MR=MC时利润π最大12-0.8Q=1.2Q+4Q=4P=12-0.4Q=10.4总收益TR=PQ=4*10.4=41.6TC=30.6总利润

已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.

(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q

1、已知某垄断竞争厂商的产品总需求函数为P=9400-4Q,成本函数为TC=4000+3000Q ,Q为产量.求

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

一垄断厂商成本函数为:TC=5Q(Q+4)+10,产品的需求函数为:Q=140-P.

联立两个方程,把需求函数带入总成本函数里.得一个二元一次方程,再求导.

假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和

收入R=PQ=9400Q-4Q2.2是只平方.对Q微分,边际收入MR=9400-8Q总成本TC=4000+3000Q对Q微分,边际成本MC=3000因为是垄断企业MR=MC求出Q=800所以P=620

假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数TC=4000+3000Q,求该厂商均衡时的产量,价格和利

按照MR=MC生产MR=9400-8QMC=30009400-8Q=30008Q=6400Q=800P=9400-4*800=6200利润π=TR-TC=PQ-4000-3000Q=6200*800-

2.已知一厂商的成本函数为:TC=5Q2+20Q+10;其产品的需求函数为:Q=140-P.

产量乘上价格即为总收益TR:由需求函数Q=140-P得P=140-QTR=P*Q=(140-Q)Q=140Q-Q^2TC=5Q^2+20Q+10利润=TR-TC=(140Q-Q^2)-(5Q^2+20

已知某垄断厂商的成本函数为TC=0.6Q^2+3Q+2,需求函数为Q=20-2.5P ,求:

垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR

已知某垄断厂商的平均收益函数为AR=1200-4Q,平均成本函数为,试求:(1)垄断厂商的需求函数; (2)垄断

(1)因为总收益TR=P*Q=AR*Q=>P=AR=1200-4Q需求函数为P=1200-4Q(2)TR=PQ=(1200-4Q)Q=1200Q-4Q²(3)TC=AC*Q将AC带入即可