设数列an满足a1等于2,an+1=2an-n+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:58:45
设数列an满足a1等于2,an+1=2an-n+1
设数列满足a1=2,an+1-an=3•22n-1

(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通

设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差

记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={

【急!】设{an}是由非负整数组成的数列,满足a1+0,a2=3,(an+1)( an )=(an-1)( an-2+2

题目不对吧.,(an+1)(an)=(an-1)(an-2+2),要是an=(an-2)+2那an+1=an-1了.还有,这种+1,+2的,到底是n+1,n+2,还是就是+1,+2?

已知数列{an}满足a1=2,an+1-an=an+1*an,那么a31等于

两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式.

an=nba(n-1)/(a(n-1)+n-1)an.a(n-1)+(n-1)an=nba(n-1)1+(n-1)[1/a(n-1)]=nb(1/an)(n-1)(1/a(n-1)+[1/(1-b)]

设数列{an}满足:a1=1,an+1=3an,n∈N+.

(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

数列{an}满足a1=2,an+1=−1an+1,则a2010等于(  )

∵a1=2,∴a2=−12+1=-13,a3=−32,a4=2,依此类推,数列是周期为3的数列,∴a2010=a3=−32,故选C

设数列{an}满足a1=2,an+1=an+1/an(n=1,2,3.),证明:an>根号下(2n+1).急用

an=lg5/√3^2n+1=lg5+(n+1/2)lg3a(n+1)=lg5+(n+1+1/2)lg3,a(n+1)-a(n)=lg3(常数),an是等差数列.

设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)

令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得

设数列{an}满足a1=0,4an+1=4an+2根号(4an+1)+1,令bn=根号(4an+1)

(1)由bn=√(4an+1)推出bn^2=4an+1即4an=bn^2-1则4a(n+1)=b(n+1)^2-1那么条件4a(n+1)=4an+2√(4an+1)+1就等价于b(n+1)^2-1=b

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式

稍等,题目不太清楚,能把数列的下标用括号括起来吗,这样容易弄混.再答:an=nba(n-1)/[a(n-1)+(n-1)]ana(n-1)=nba(n-1)-(n-1)an∵an≠0∴上式等号两边同时

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

已知数列{an}满足a1=2,an+1=2an/an+2,则an等于多少

a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1

数列AN满足A1=2,AN+1=AN^2+6AN+6,设CN=LOG5(AN+3),证{CN}为等比

a(n+1)=an^2+6an+6=(an+3)^2-3,即a(n+1)+3=(an+3)^2,从而log5[a(n+1)+3]=2log5(an+3)而cn=log5(an+3),则结合上式即得c(

设数列{an}满足a1=2,an+1-an=3·2^(2n-1)

由递推式有a2-a1=3*2a3-a2=3*2*4a4-a3=3*2*4^2.an-a(n-1)=3*2*4^(n-2)累加得an-a1=2*4^(n-1)-8得an=2*4^(n-1)-6于是bn=

设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an

n=1时,3a1=3a1,n=2时,3+3a2=4a2,a2=33(a1+a2+a3+······+an)=(n+2)an①n>=2时有:3(a1+a2+a3+······+a(n-1))=(n+1)

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2