设数列bn的前n项和为sn 切bn=2-2sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:18:06
设数列bn的前n项和为sn 切bn=2-2sn
设数列(an)的前n项和为Sn=2n^2,(bn)为等比数列.

an=Sn+1-Sna1=b1=S1a2=S2-S1b2=b1/(a2-a1)因为bn是等比数列,所以b2就知道了然后cn的通项公式就知道后面的应该没啥大问题只授剑意,不授剑招

设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn

A(n+1)=S(n+1)-Sn得:S(n+1)-Sn=Sn+3^n∴S(n+1)=2Sn+3^n∴S(n+1)-3*3^n=2Sn-2*3^n∴S(n+1)-3^(n+1)=2(Sn-3^n)∴B(

设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)

S_n=n^2+n,S_(n-1)=〖(n-1)〗^2+n-1,∴a_n=S_n-S_(n-1)=2n (n>1),验证当n=1时,a_1=S_1=2,∴n=1时亦立,∴a_n=2n,

设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项

由an+1=Sn+3n得:Sn+1-Sn=Sn+3n,即Sn+1=2Sn+3n.所以Sn+1-3n+1=2Sn+3n-3n+1.整理得:Sn+1-3n+1=2(Sn-3n),这就是说,数列{Sn-3n

数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性

Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0)

(1)S5=5a1+10d=5+10d=45,d=4,a3=1+2d=9.T3=b1+b2+b3=1+q+q^2=9-q,则q=-4或q=2.因为q>0,所以q=2.{an}的通项公式为:an=1+4

设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,

设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,1,求bn的通项公式2,若cn=anbn(n=1,2,3,...),Tn为数列cn的前n项和,求

设数列{Bn}的前n项和为Sn,且Bn=2-2Sn;数列{An}为等差数列,且A5=14,A7=20.

1=2-2b1,b1=2/3.bn-b(n-1)=-2(sn-s(n-1))=-2bn,bn/b(n-1)=1/3.bn=2/3•(1/3)^(n-1).a1=2,d=3.an=3n-1.

设数列{an}的前n项和为Sn,且sn=n*n-4n+4,设Bn=An/2的n次方,则数列{Bn}的前n项和Tn为?

先求an令n=1,a1=s1=1;当n>=2时,an=Sn-Sn-1=(n-2)^2-(n-3)^2(注a^b表示a的b次方)=2n-5(注意,数列an不是一个等差数列,首项不符合上面的通项公式,只是

设数列{bn}的前n项和为sn,且bn=2-2sn;数列{an}为等差数列,且a5=14,a7=20求

1=2-2*b13b1=2b1=2/3bn-bn-1=(2-2sn)-(2-2sn-1)=-2(sn-sn-1)=-2bn3bn=bn-1bn=1/3*bn-1{bn}是等比数列{bn}={2/3*(

设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn

答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1

数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn

an=Sn-S(n-1)=3an+2-3a(n-1)-2an=3/2a(n-1)a1=3a1+2a1=-1an=(-1)*(3/2)^(n-1)anbn=-n*(3/2)^(n-1)Tn=-1(3/2

已知数列an的前n项和Sn=n^2,设bn=an/3^n,记数列bn的前n项和为Tn.

Sn=n^2推出an=2n-1bn=(2n-1)/3^nTn=b1+b2+b3+……+bn-1+bn=1/3+3/3^2+5/3^3+……+(2n-3)/3^n-1+(2n-1)/3^n①3Tn=1+

已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn

根据A1=S1(n=1);An=Sn-Sn-1(n>=2)可得An=2n-1;进而得Bn=(2n-1)/3^n下证Tn=1-(n+1)/3^n显然T1=1/3=B1Tn-Tn-1=1-(n+1)/3^

设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n

(1)bn=(n-1)Sn+2n-(n-2)S(n-1)-2(n-1)=(n-1)an+S(n-1)+2bn=nanan=S(n-1)+2Sn=2S(n-1)+2Sn+2=2(S(n-1)+2)得证(

设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn

Sn+1=an+1+Sn.又an+1=Sn+3∧n.Sn+1=2Sn+3∧n.①3∧n+1=3×3∧n.②①-②得Sn+1-3∧n+1=2(Sn-3∧n)后面的你知道吧,我就不说了.

已知数列{an}的前n项和为Sn,且2Sn=2-(2n-1)an(n属于N*)(1)设bn=(2n+1)Sn,求数列{b

n=1时2a1=2-a1,a1=2/3.n>1时2Sn=2-(2n-1)(Sn-S),∴(2n+1)Sn-[2(n-1)+1]S=2,即bn-b=2,b1=3a1=2,∴bn=2n.

已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn

Sn=n^2S(n-1)=(n-1)^2an=Sn-S(n-1)=n^2-(n-1)^2=2n-1因此得到数列{an}的通项公式为an=2n-1