设数列{an}满足an 1=an^2-nan 1的出处

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:54:48
设数列{an}满足an 1=an^2-nan 1的出处
设数列满足a1=2,an+1-an=3•22n-1

(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通

数列{an}满足a

∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50

数列{an}中,a1=-2,an+1=1+an1−an,则a2010=(  )

由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴

设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差

记Sn=a1+a2/2+a3/3+a4/4……+an/n=An+B,则a1=S1=A+B,当n>=2时,an/n=Sn-S(下标n-1)=An+B-[A(n-1)+B]=A,an=An,所以,an={

设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+a

a1×a2×a3×a4=a1+a2+a3+a41×1×2×a4=1+1+2+a4a4=4a2×a3×a4×a5=a2+a3+a4+a51×2×4×a5=1+2+4+a57a5=7a5=1=a1a3×a

【急!】设{an}是由非负整数组成的数列,满足a1+0,a2=3,(an+1)( an )=(an-1)( an-2+2

题目不对吧.,(an+1)(an)=(an-1)(an-2+2),要是an=(an-2)+2那an+1=an-1了.还有,这种+1,+2的,到底是n+1,n+2,还是就是+1,+2?

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式.

an=nba(n-1)/(a(n-1)+n-1)an.a(n-1)+(n-1)an=nba(n-1)1+(n-1)[1/a(n-1)]=nb(1/an)(n-1)(1/a(n-1)+[1/(1-b)]

设数列{an}满足:a1=1,an+1=3an,n∈N+.

(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方

(1)2Sn=an^2+an2Sn-1=a(n-1)^2+a(n-1)2an=2Sn-2Sn-1=an^2-a(n-1)^2+an-a(n-1)an^2-a(n-1)^2=an+a(n-1)[an+a

设数列{an}满足a1=2,an+1=an+1/an(n=1,2,3.),证明:an>根号下(2n+1).急用

an=lg5/√3^2n+1=lg5+(n+1/2)lg3a(n+1)=lg5+(n+1+1/2)lg3,a(n+1)-a(n)=lg3(常数),an是等差数列.

设数列{an}的通项公式为an=n2+λn(n∈N*)且{an}满足a1

利用作差法即可a(n+1)-a(n)=(n+1)²+λ(n+1)-[n²+λn]=2n+1+λ由已知条件,{an}是递增数列∴2n+1+λ>0恒成立∵2n+1+λ的最小值是2*1+

设数列{an}满足a1=0,4an+1=4an+2根号(4an+1)+1,令bn=根号(4an+1)

(1)由bn=√(4an+1)推出bn^2=4an+1即4an=bn^2-1则4a(n+1)=b(n+1)^2-1那么条件4a(n+1)=4an+2√(4an+1)+1就等价于b(n+1)^2-1=b

设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式

稍等,题目不太清楚,能把数列的下标用括号括起来吗,这样容易弄混.再答:an=nba(n-1)/[a(n-1)+(n-1)]ana(n-1)=nba(n-1)-(n-1)an∵an≠0∴上式等号两边同时

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

数列AN满足A1=2,AN+1=AN^2+6AN+6,设CN=LOG5(AN+3),证{CN}为等比

a(n+1)=an^2+6an+6=(an+3)^2-3,即a(n+1)+3=(an+3)^2,从而log5[a(n+1)+3]=2log5(an+3)而cn=log5(an+3),则结合上式即得c(

设数列{an}满足a1=2,an+1-an=3·2^(2n-1)

由递推式有a2-a1=3*2a3-a2=3*2*4a4-a3=3*2*4^2.an-a(n-1)=3*2*4^(n-2)累加得an-a1=2*4^(n-1)-8得an=2*4^(n-1)-6于是bn=

已知数列{an}满足a1=2,an+1=1+an1−an(n∈N*),则a1a2a3…a2010的值为(  )

∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4

设数列an

解题思路:第三问,利用“放缩法”(放大为能求和的形式,且求和后满足要证的不等式),关键是要“从第三项开始放大”(这是被题目的结论逼出来的)。n=1或2的情况单独证明(说明).解题过程:

设数列{an},{bn},满足an=[lg(b1)+lg(b2)+...+lg(bn)]/n,证明{an}为等差数列的冲

=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>