设方程e^y xy=e确定函数y=y(x)求dy dx|x=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:05:21
如图所示,最后求解是自上而下带入的
e^y-xy=ee^y·dy/dx-(y+x·dy/dx)=0e^y·dy/dx-y-x·dy/dx=0(e^y-x)·dy/dx=ydy/dx=y/(e^y-x)dy/dx不能叫做dx分之dy,因为
e^y+xy=e两边求导e^y*y'+y+xy'=0∴y'(e^y+x)=-yy'=-y/(e^y+x)即dy/dx=-y/(e^y+x)当x=0时,e^y=e,y=1∴dy/dx|(x=0)=-1/
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
这个题目要用到微分的形式不变性e^y*dy+d(xy)=0e^y*dy+xdy+ydx=0-ydx=(x+e^y)dydy=-y*dx/(x+e^y)
xy-e^x+e^y=0对x求导则(xy)'=1*y+x*y'(e^x)'=e^x(e^y)=e^y*y'所以y-e^x+(x+e^y)y'=0y'=(e^x-y)/(x+e^y)所以dy/dx=(e
Zxe^z=YZ+XYZx,Zx=YZ/(e^z-XY)Zy=XZ/(e^z-XY)dZ=Zxdx+Zydy=(ydx+xdy)Z/(e^z-xy)再问:设F(x,y,z)=e^z-xyzə
e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]
分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.
两端对x求导数(把y看作x的函数),则1-y'=e^(xy)*(1*y+x*y')y'[xe^(xy)+1]=1-ye^(xy)dy/dx=y'=[1-ye^(xy)]/[xe^(xy)+1]
dz=-dx-dy
xy+e^y=1e^y(0)=1y(0)=0xy'+y+e^yy'=00+y(0)+y'(0)=0y'(0)=0xy''+y'+y'+e^yy''+(y')^2e^y=00+2y'(0)+y''(0)
将x=0代入方程得:lny=1,得y=e方程两边对x求导:y+xy'+e^xlny+y'e^x/y=0代入x=0,y=e得:e+lne+y'/e=0,得y'=-e(e+1)即y'(0)=-e(e+1)
两端对x求导得e^x+e^y*y'=y+xy'y'=(e^x-y)/(x-e^y)dy=(e^x-y)/(x-e^y)dx
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
两边对x求导数,得y'*e^y+y+xy'=0,在原方程中令x=0可得y=1,因此,将x=0,y=1代入上式可得y'+1=0,即y'(0)=-1.再问:对x求导时y可以当成一个常数吗?为什么要用公式(
/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'
两边对x求导:1+y'=y'e^y得dy/dx=y'=1/(e^y-1)
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[