设方程e^z=xyz确定隐函数z=f(x,y),求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:03:13
设方程e^z=xyz确定隐函数z=f(x,y),求
设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

设f(x,y,z)=e²yz²,其中z=z(x,y)是由方程x+y+z+xyz=0确定的隐函数,求x

这个题目很典型的再问:那怎么做呢再答:好,我马上帮你做http://hiphotos.baidu.com/laoshagua/pic/item/f7da058747c09b4bc75cc378.jpg

设函数z=z(x,y)由方程x^2+y^3-xyz^1=0确定,求z/x,z/y

x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y

关于隐函数求偏导设z=z(x,y)是由方程e^z-xyz=0确定的隐函数,求对x的偏导.

令F=e^z-xyzF对x的偏导数为Fx=-yzF对z的偏导数为Fz=e^z-xy由偏导公式z对x的偏导=-Fx/Fz=yz/(e^z-xy)

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设Z=Z(X,Y)是由方程Z*Z-2XYZ=1确定的隐函数,求全微分dz

设F(x,y,z)=z^2-2xyz-1则Fx=-2yz,Fy=-2xz,Fz=2z-2xyαz/αx=-Fx/Fz=-(-2yz)/(2z-2xy)=yz/(z-xy)αz/αy=-Fy/Fz=xz

设方程e^z=xyz确定z为x,y的隐函数,求全微分dz(写出详细步骤,

Zxe^z=YZ+XYZx,Zx=YZ/(e^z-XY)Zy=XZ/(e^z-XY)dZ=Zxdx+Zydy=(ydx+xdy)Z/(e^z-xy)再问:设F(x,y,z)=e^z-xyzə

函数z=z(x,y)由方程e^z-xyz=0确定,求偏导时不同方法不同答案

此题两种方法求出的偏导数是相等的,估计题主算错了.方法如下:1:用算出的一阶偏导数求二阶混合偏导数如下:(计算中注意e^z=xyz)2:用题中的方法二计算: 所以两种方法计算结果相同

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

设由方程e^z-xyz=0确定了函数y=y(x),则偏z偏x等于

e^z-xyz=0z=㏑x+㏑y+㏑z[偏z偏x]=1/x+(1/z)[偏z偏x](这里y看成常数)[偏z偏x]=(1/x)/{1-(1/z)}=z/[x(z-1)]

设z=z(x,y)是由方程(e^z)-xyz=0确定的隐函数,求偏导

对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)

设z=z(x,y)是由方程(e^x)-xyz=0确定的隐函数,则对x的偏导是?

两边对X求导数就行了撒,把y看成是一个常数,Z看成对x函数就行了撒e^x-(z*y+y*x*zx)=0所以z对x的偏导数zx=(zy-e^x)/(y*x)

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

设z=z(x,y)是由方程sinz=xyz所确定的隐函数,求 (下面的e是倒写的,打不出来)(ez/ex)(ez/ey)

已知z=z(x,y)是由方程sinz=xyz所确定的隐函数.对sinz=xyz方程两边同对x求偏导,于是有cosz*(əz/əx)=yz+xy*(əz/əx).

由方程xyz=e^x确定的隐函数z=z(x,y)的全微分dz

代入:2z-2z+lnz=0--->z=1,所以z'(y)=-z/y从而dz=z'(x)dx+z'(y)dy=(e^x-yz)/(xy)

设方程e^x-xyz=0确定函数z=f(x,y),求偏z/偏x的二阶导

见图片,对式子进行二次求偏导就可以得到了.先得到一次偏导数的表达式,再对式子进行一次求偏导.可以得到二次偏导数关于一次偏导数的表达式.