设方阵A满足A^2-A-3E=0,证明:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:54:40
哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......
A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵
A*A=A,A*A-A=0,A*A-A-12E=-12E(A+3E)(A-4E)=-12E,由于|(A+3E)*(A-4E)|=|A+3E|*|A-4E|=(-12)^n≠0(设A是n阶方阵),所以A
证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^
A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O
证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、
再答:高代好久没看了不对了见谅只会第一问再答:第一个超错了其他没问题再答:重写吧再答:再问:嗯,但题目是3E再答:
证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)
A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我
(A+E)(A平方-A-E)=-4E-4除过来根据定义来
证明:∵A^2-2A+3E=0∴A^2-3A+A-3E+6E=0A(A-3E)+(A-3E)=-6E(A-3E)(A+E)=-6E∴|(A-3E)(A+E)|=|A-3E||A+E|=|-6E|≠0∴
首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)
从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其
由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).