设方阵a满足a的平方等于a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:55:34
设方阵a满足a的平方等于a
设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵

A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设a为满秩方阵,证明:a的逆的平方等于a的平方的逆.

因为(AB)^(-1)=B^(-1)A^(-1)所以(A^2)^(-1)=(AA)^(-1)=A^(-1)A^(-1)=(A^(-1))^2

设n阶方阵A满足A平方=En,|A+En|不等于0,证明:A=En.

证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)

设n阶方阵A满足A^2-2A-3E=0,则A的逆矩阵等于什么 # _ #^^^^^^^

因为A^2-2A-3E=0所以A(A-2E)=3E所以A^-1=(1/3)(A-2E)

设A是n阶方阵,满足A乘以A一撇等于E,|A|

[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|

设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方

因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设方阵A满足方程A平方-3A-10E=0,则A-1次方=

由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1

设N阶矩阵A满足A的平方等于E,A的特征值只能等于正负1

设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设方阵A满足A的平方—A—E=0 ,证明A可逆,并求A的负一次方.

/>A^2-A-E=0那么A(A-E)-E=0A(A-E)=E所以A可逆,A^(-1)=A-E

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0

n阶方阵A满足,A的平方=0,证A的秩大于等于n/2

(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所

设A为三阶方阵,且A的平方等于0,怎样求A的秩和A的伴随矩阵的秩

A为三阶矩阵A^2=0则2r(A)《3r(A)《1r(A)=0,1若r(A)=0,则r(A*)=0若r(A)=1〈(n-1)=2,则r(A*)=0再问:2r(A)《3为什么啊再答:定理,AB=0,则R

设N阶方阵A满足A的平方等于A,证明A或者是单位矩阵或者是不可逆矩阵

证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗

设A是n阶方阵,且A的平方等于A,证明A+E的逆等于A-2E

(A+E)(A-2E)=A^2-2AE+EA-2E^2=A-2A+A-2E=-2E所以A+E的逆应该是-(A-2E)/2吧

设r是方阵A的特征值,如何证明r的平方是方阵A的平方的特征值

设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值